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Abstract

An injector and accelerator is analyzed that uses three
collinear laser pulses in a plasma: a pump pulse, which
generates a large wakefield (≥ 20 GV/m), and two coun-
terpropagating injection pulses. When the injection pulses
collide, a slow phase velocity beat wave is generated that
injects electrons into the fast wakefield for acceleration.
Particle tracking simulations in 1-D with injection pulse in-
tensities near1017 W/cm2 indicate the production of high
energy electrons with bunch durations as short as 3 fs, en-
ergy spreads as small as 0.3%, and densities as high as1018

cm−3.

1 INTRODUCTION

Plasma-based accelerators [1] may provide a compact
source of high energy electrons due to their ability
to sustain ultrahigh electric fieldsEz on the order of
E0 = cmωp/e ' n

1/2
0 [cm−3] V/cm, whereωp =

(4πn0e
2/m)1/2 is the plasma frequency andn0 is the

plasma density. Accelerating fields of 10-100 GV/m have
been generated over distances of a few mm [2-4] in both the
standard [5] and self-modulated [6,7] regimes of the laser
wakefield accelerator (LWFA). The characteristic scale-
length of the accelerating plasma wave is the plasma wave-
lengthλp = 2πc/ωp, which is typically≤ 100 µm. Al-
though several recent experiments [3,4] have demonstrated
the self-trapping and acceleration of plasma electrons in the
self-modulated LWFA, the production of electron beams
with relatively low momentum spread and good pulse-to-
pulse energy stability will require injection of ultrashort
electron bunches into the wakefield with femtosecond tim-
ing accuracy. These requirements are beyond the cur-
rent state-of-the-art performance of photo-cathode radio-
frequency electron guns.

Recently an all-optical method for injecting electrons in
a standard LWFA has been proposed [8]. This method (re-
ferred to as LILAC) utilizes two laser pulses which prop-
agate either perpendicular or parallel to one another. The
first pulse (the pump pulse) generates the wakefield, and the
second pulse (the injection pulse) intersects the wakefield
some distance behind the pump pulse. The ponderomotive
forceFp ∼ ∇a2 of the injection pulse can accelerate a frac-
tion of the plasma electrons such that they become trapped
in the wakefield, wherea2 ' 7× 10−19λ2[µm]I[W/cm2],
λ = 2πc/ω is the laser wavelength, andI the intensity.
Simulations, which were performed for ultrashort pulses at
high densities (λp/λ = 10 andEz/E0 = 0.7), indicated

∗Lawrence Berkeley National Laboratory, Berkeley CA 94720

the production of a 10 fs, 21 MeV electron bunch with a
6% energy spread. However, high intensities (I > 1018

W/cm2) are required in both the pump and injection pulses
(a ' 2). An all optical electron injector would be a signifi-
cant step in reducing the size and cost of a LWFA.

Figure 1: Profiles of the pump laser pulsea0, the wakefield
φ, and the forwarda1 injection pulse, all of which are sta-
tionary in theψ = kp(z − vp0t) frame, and the backward
injection pulsea2, which moves to the left at' 2c

In the following, a colliding pulse optical injection
scheme for a LWFA is proposed and analyzed that uses
three short laser pulses: an intense pump pulse (denoted
by subscript 0), a forward going injection pulse (subscript
1), and a backward going injection pulse (subscript 2), as
shown in Fig. 1. The frequency, wavenumber, and normal-
ized intensity are denoted byωi, ki, andai (i = 0, 1, 2).
Furthermore,ω1 = ω0, ω2 = ω0 − ∆ω (∆ω ≥ 0), and
ω0 � ∆ω � ωp are assumed such thatk1 = k0, and
k2 ' −k0. The pump pulse generates a fast (vp0 ' c)
wakefield. When the injection pulses collide (some dis-
tance behind the pump) they generate a slow ponderomo-
tive beat wave with a phase velocityvpb ' ∆ω/2k0. Dur-
ing the time in which the two injection pulses overlap, a
two-stage acceleration process can occur, i.e., the slow beat
wave injects plasma electrons into the fast wakefield for ac-
celeration to high energies. It will be shown that injection
and acceleration can occur at low densities (λp/λ ∼ 100),
thus allowing for high single-stage energy gains, with nor-
malized injection pulse intensities ofa1 ∼ a2 ∼ 0.2
(∼ 102 less intensity than required by the LILAC scheme).
Furthermore, the colliding pulse concept offers detailed
control of the injection process: the injection phase can be
controlled via the position of the forward injection pulse,
the beat phase velocity via∆ω, the injection energy via the
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pulse amplitudes, and the injection time (number of trapped
electrons) via the backward pulse duration.

2 ANALYSIS

The colliding pulse injection mechanism will be analyzed
in 1-D with the plasma wave and laser fields represented
by the normalized scalarφ = eΦ/mc2 and vectora =
eA⊥/mc2 potentials, respectively. The axial component of
the normalized electron momentumuz = pz/mc = γβz

obeysduz/dct = ∂φ/∂z − (2γ)−1∂a2/∂z, whereγ =
γzγ⊥, γ⊥ = (1+a2)1/2, andγz = (1−β2

z)−1/2. This can
be written in terms of the phase of the electron with respect
to the wakefieldψ = kp(z − vp0t), i.e.,

d2ψ

dτ2
=

(1 − β2
z )

γ

∂φ

∂ẑ
− 1
γ2

(
∂

∂ẑ
+ βz

∂

∂τ

)
a2

2
, (1)

wherekp = ωp/c, vp0 = cβp0 is the wakefield phase ve-
locity, ẑ = kpz, τ = ωpt, andβz = dψ/dτ + βp0.

The effects of three waves will be considered: a plasma
wakefieldφ = φ̂(ψ) cosψ, and a forward and a back-
ward injection laser pulse, both of the formai = âi(z −
vgit) (sin θiex + cos θiey). Here,θi = kiz − ωit and the
amplitudeŝai andφ̂ are assumed to be slowly varying com-
pared to the phasesθi andψ. Also, ki andωi satisfyki =
σiωi(1 − ω2

p/ω
2
i )1/2, whereσ1 = 1 andσ2 = −1, which

implies a group velocityvgi = cβgi = c2ki/ωi (vp0 =
vg0 = vg1). Furthermore,a2 = â2

1 + â2
2 + 2â1â2 cosψb,

whereψb = θ1 − θ2 = ∆k(z − vpbt) is the beat phase,
vpb = cβpb = ∆ω/∆k, and∆k = k1 − k2 ' 2k0.

In the absence of the injection pulses, electron mo-
tion in the wakefield is described by the Hamiltonian [9]
Hw = γ − βp0(γ2 − 1)1/2 − φ, whereφ = φ0 cosψ.
The boundary between trapped and untrapped orbits is
given by the separatrixHw(γ, ψ) = Hw(γp0, π), where
γp0 = (1−β2

p0)
−1/2. The minimum momentum of an elec-

tron on the separatrix is given byumin ' (1/∆φ−∆φ)/2,
where∆φ = φ0(1 + cosψ), assumingγp0∆φ � 1 and
βp0 ' 1. In particular atψ = 0, umin = 0 for φ0 = 1/2,
which means that an electron that is at rest at the phase
ψ = 0 will be trapped. The background plasma electrons,
however, are untrapped and are undergoing a fluid oscilla-
tion with a momentumuf ' −φ (φ2 � 1). Hence, at
ψ = 0, the plasma electrons are moving backward with
uf ' −φ0, which is far from the trapping threshold.

The beat wave leads to formation of phase space buckets
(separatrices) of width2π/∆k ' λ0/2, which are much
shorter than those of the wakefield (λp), thus allowing for
a separation of time scales. In particular, it can be shown
that both the transit time2π/∆ω of an untrapped electron
through a beat wave bucket and the synchrotron (bounce)
timeπ/(â1â2)1/2ω0 of a deeply trapped electron in a beat
wave bucket are much shorter than a plasma wave period
2π/ωp. Hence, on the time scale in which an electron in-
teracts with a single beat wave bucket, the wakefield can be
approximated as static.

In the combined fields, the electron motion can be an-
alyzed in the local vicinity of a single period of the beat
wave by assuming that the wakefield electric fieldEz =
−k−1

p E0∂φ/∂z ' Ez0 is constant. The Hamiltonian asso-
ciated with Eq. (1) is given by

Hb ' γ − βpb

[
γ2 − γ2

⊥(ψb)
]1/2

+ εψb, (2)

whereε = Ez0kp/E0∆k is constant andγ2
⊥ = 1 + â2

1 +
â2
2 + 2â1â2 cosψb. Whenε = 0, the phase space orbits are

symmetric with respect toψb. In terms of the normalized
axial momentum, the maximum and minimum points on
the separatrix are given byubm ' βpbγbp(1 + 4â2

1)
1/2 ±

2â1γpb, whereγpb = (1 − β2
pb)

−1/2 and â1 = â2 is as-
sumed. Whenε 6= 0, the separatrix distorts into fished-
shape islands. In particular, whenε < 0 (ε > 0), the “fish
tail” of the separatrix opens to the right (left).

A scenario by which the beat wave leads to trapping
in the plasma wave is the following. In the phase region
−π/2 < ψ < 0, the plasma electrons are flowing back-
ward,uf = −φ0 cosψ < 0, and the electric field is accel-
erating,Ez/E0 = φ0 sinψ < 0. Hereε < 0 and the beat
wave buckets open to the right. Consider an electron that is
initially flowing backward and resides below the beat wave
separatrix. Since the separatrix opens to the right, there ex-
ists open orbits which can take an electron from below to
above the beat wave separatrix. Such an electron can ac-
quire a sufficiently large positive velocity to allow trapping
and acceleration in the plasma wave. These open phase
space orbits, which provide the necessary path for electron
acceleration, can exist when the beat wave resides within
−π/2 < ψ < 0.

An estimate for the threshold for injection into the wake-
field can be obtained by considering the effects of the
wakefield and the beat wave individually and by requir-
ing (i) the maximum energy of the beat wave separatrix
exceed the minimum energy of the wakefield separatrix,
ubmax ≥ (∆φ−1 − ∆φ)/2, and (ii) the minimum momen-
tum of the beat wave separatrix be less than the plasma
electron fluid momentum,ubmin ≤ −φ. These two condi-
tions imply that the beat wave separatrix overlaps both the
wakefield separatrix and the plasma fluid oscillation, thus
providing a phase-space path for plasma electrons to be-
come trapped in the wakefield. For a given wakefield am-
plitudeφ0, conditions (i) and (ii) imply the optimal phase
location3φ0 cosψ ' 31/2 − 2φ0 − 2βpb and threshold am-
plitude6â1 > 31/2−2φ0+βpb of the injection pulse, where
φ2

0 cos2 ψ � 1, â2
1 � 1, andβ2

pb � 1 were assumed. For
example,φ0 = 0.6 andβpb = 0.05 imply ψ = −1.3− 2πj
andâ1 > 0.11.

3 SIMULATION

To further evaluate the colliding laser injection method, the
motion of test particles in the combined wake and laser
fields was simulated by numerically solving Eq. (1). At
τ = 0, the forward (backward) pulse profilêa1 (â2) is
a half-period of a sine wave with maximum amplitude
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a1m (a2m), centered atψ = ψ1 < 0 (ψ2 > 0), with
lengthL1 (L2). Test particles are loaded uniformly from
ψ = 0 to ψ = ψmax with dψ/dτ = −βp0 (initially
at rest) and pushed fromτ = 0 to τ = τmax. Also,
φ̂ = φ0

[
1 − exp(−ψ2/π2)

]
for ψ ≤ 0.

To validate the analytical predictions for the trapping
thresholds, a “near threshold” case was simulated with
ω1/ωp = 100, ω2/ωp = 90, andφ0 = 0.6, which for
λ1 = 2πc/ω1 = 1 µm impliesn0 ' 1017 cm−3 and
Ez = 0.6E0 ' 19 GV/m. Also, a1m = a2m = 0.3
(1.2×1017 W/cm2),L1 = L2 = λp/8 (42 fs),ψ1 = −13.6
andψ2 = 21.4 (chosen so the beat wave and test parti-
cles overlap). After a propagation distance ofτmax = 300
(0.48 cm), trapped electrons were observed with a bunch
lengthLb = 6.3 µm (21 fs) with 60% of the electrons
are contained within 66 MeV±8%. The fractionftr of
those particles which encounter the beat wave that become
trapped wasftr ' 30%. A numerical optimization of the
parameters was also performed to determined the trapping
threshold. The optimal phase for injection (which mini-
mizes the value ofa1m required for trapping) was found
to beψ1 = −13.8, in good agreement with theory. Fur-
thermore, trapping was observed fora1m > 0.17, some-
what higher than the analytical prediction (0.11). Addi-
tional simulations indicate that trapping occurs when the
center of theL1 = λp/8, a1m = 0.3 pulse is located
within −14.2 ≤ ψ1 ≤ −13.5. This implies that the for-
ward pulse must be synchronized to the wake with an ac-
curacy< 37 fs, which is not a serious constraint and can
be relaxed somewhat by using a longer forward pulse.

More dramatic results can be obtained by moving the po-
sition of the injection pulse slightly forward and increasing
both duration and amplitude of the injection pulses (in com-
parison to the previous ”near threshold” example). As an
example, a simulation was performed withψ1 = −12.6,
a1m = a2m = 0.5, φ0 = 0.7, L1 = L2/4 = λp/4,
ω1/ωp = 100, andω2/ωp = 85 (λ1 = 0.85 µm, λ2 =
1 µm, andλp = 85 µm). After a distance ofτmax = 100
(0.14 cm), the results are quite dramatic: a bunch dura-
tion of 2.9 fs was obtained due to natural compression pro-
vided by the axial electric field, with a mean energy of 27
MeV and a standard deviation in energy of 0.32%. The
trapping fraction isftr ' 19% and the bunch density is
nb = 1.8 × 1018 cm−3. Furthermore, in this run, the
trapped electron are injected into and remain within a phase
region of the wakefield that is both accelerating and focus-
ing.

The bunch density isnb ' ftrn0Lz/Lb, whereLz '
(L1 + L2)/2 is the length of plasma that encounters the
overlapping pulses. Assuming that the 1-D results hold
for a pump laser of radiusr0 implies a total number of
trapped electronsNb ' ftrn0Lzπr

2
0, e.g.,Nb ' 7.7× 109

for Fig. 4 with r0 = 40 µm. Note thatNb can be in-
creased by increasingn0, r0, a1m (via ftr) and, in partic-
ular,Lz by increasing the duration of the backward pulse
L2. The ratio ofNb to the theoretical beam loading limit
N0 [10] isNb/N0 = ftrkpLzE0/Ez, which can easily ap-

proach unity. ForNb nearN0, however, space-charge ef-
fects become important and a self-consistent simulation is
required.

In summary, a method has been proposed and analyzed
for injecting plasma electrons into a large wakefield using
two colliding laser pulses. Simulations of test electrons in
prescribed 1-D fields indicate the production of relativistic
(≥ 25 MeV) electrons with bunch durations as short as 3
fs, energy spreads as small as 0.3%, and densities as high
as1018 cm−3.
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