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Abstract the production of a 10 fs, 21 MeV electron bunch with a

6% energy spread. However, high intensitiésx 10'®

An injector and accelerator is analyzed that uses thr o L
. ) ) . W/cn?) are required in both the pump and injection pulses
collinear laser pulses in a plasma: a pump pulse, whic : - e

a ~ 2). An all optical electron injector would be a signifi-

generates a Iargg wgkeflelg 20 GVim), anq .tWO. coun - ont step in reducing the size and cost of a LWFA.
terpropagating injection pulses. When the injection pulses$

collide, a slow phase velocity beat wave is generated that

injects electrons into the fast wakefield for acceleration.

Particle tracking simulations in 1-D with injection pulse in- % 1.0 i
tensities neat0'” W/cn? indicate the production of high = i . ¢
energy electrons with bunch durations as shortas 3fs,en- § 0.5[ S o !
ergy spreads as small as 0.3%, and densities as high&s ° L /\al\ /\2 -
—3 n, [ \\ \\ // \‘
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Plasma-based accelerators [1] may provide a compact 5 I ]
source of high energy electrons due to their ability = —1071
to sustain ultrahigh electric field&, on the order of 3 o ) 0 1

Ey = cmwp/e ~ né/z[cm_3] Vicm, wherew, = v/2m
(4mnge?/m)'/? is the plasma frequency and, is the
plasma density. Accel_erating fields of 10-100 G\//m haV‘itigure 1: Profiles of the pump laser pulsg the wakefield
been generated over distances of a few mm [2-4]in both the 5 the forwardy; injection pulse, all of which are sta-
standgrd [5] and self-modulated [6,7] regimes 'of'the 'aSQfonary in they = k,(z — vyot) frame, and the backward
wakefield accelerator.(LWFA). The ch.aracterlstlc Scalei'njection pulsezs, which moves to the left at 2¢
length of the accelerating plasma wave is the plasma wave- _ o o
length A, = 2m¢/w,, which is typically< 100 zm. Al- In the following, a colliding pulse optical injection
though several recent experiments [3,4] have demonstratdgheme for a LWFA is proposed and analyzed that uses
the self-trapping and acceleration of plasma electrons in tfiaree short laser pulses: an intense pump pulse (denoted
self-modulated LWFA, the production of electron beam&®Y subscript 0), a forward going injection pulse (subscript
with relatively low momentum spread and good pulse-tol): @nd a backward going injection pulse (subscript 2), as
pulse energy stability will require injection of ultrashortShown in Fig. 1. The frequency, wavenumber, and normal-
electron bunches into the wakefield with femtosecond timfz€d intensity are denoted hy;, k;, anda; (i = 0,1,2).
ing accuracy. These requirements are beyond the cdrirthermorew; = wo, w2 = wo — Aw (Aw > 0), and
rent state-of-the-art performance of photo-cathode radigo > Aw > w, are assumed such that = ko, and
frequency electron guns. kg ~ —ko. The pump pulse generates a fagf(~ c)
Recently an all-optical method for injecting electrons iVakefield. ‘When the injection pulses collide (some dis-
a standard LWFA has been proposed [8]. This method (ré2nce behind the pump) they generate a slow ponderomo-
ferred to as LILAC) utilizes two laser pulses which prop-ive beat wave with a phase velocity, ~ Aw/2ko. Dur-
agate either perpendicular or parallel to one another. THed the time in which the two injection pulses overlap, a
first pulse (the pump pulse) generates the wakefield, and tHé°-stage acceleration process can occur, i.e., th'e slow beat
second pulse (the injection pulse) intersects the wakefieffpVe iNjects plasma electrons into the fast wakefield for ac-
some distance behind the pump pulse. The ponderomotigglération to high energies. It will be shown that injection
force F, ~ Va? of the injection pulse can accelerate a frac&nd acceleration can occur at low densitigs/( ~ 100),
tion of the plasma electrons such that they become trappBtS allowing for high single-stage energy gains, with nor-
in the wakefield, where? ~ 7 x 10~ \2[um]I[W /cm?], malized mpctlon.pulse intensities af ~ a; ~ 0.2
A = 2mc/w is the laser wavelength, anfdthe intensity. (~ 107 less intensity than required by the LILAC scheme).
Simulations, which were performed for ultrashort pulses dturthermore, the colliding pulse concept offers detailed
high densities X, /A = 10 and E./E, = 0.7), indicated control of the injection process: the injection phase can be
controlled via the position of the forward injection pulse,
* Lawrence Berkeley National Laboratory, Berkeley CA 94720 the beat phase velocity viaw, the injection energy via the
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pulse amplitudes, and the injection time (number of trapped In the combined fields, the electron motion can be an-

electrons) via the backward pulse duration. alyzed in the local vicinity of a single period of the beat
wave by assuming that the wakefield electric fidld =
2  ANALYSIS —k;lanqS/az ~ F., is constant. The Hamiltonian asso-

ciated with Eq. (1) is given by
The colliding pulse injection mechanism will be analyzed 12
in 1-D with the plasma wave and laser fields represented Hy >~ — Bpp [72 - vi(ww] + ey, (2)
by the normalized scalas = e®/mc? and vectora = ) ) "
eA, /mc? potentials, respectively. The axial component ofVheree = E.ok,/EoAk is constantand ] = 1 + aj +
the normalized electron momentum = p, /mc = ~3, @2 1 214z cos . Whene = 0, the phase space orbits are
obeysdu, /det = 9¢/dz — (27)~'da?/dz, wherey = symmetrlc with respect t%- In terms of_tr_]e normahzed
vy vL = (1+a2)Y/2, andy, = (1 - $2)~1/2. This can axial momentum, the maximum and minimum points on

. . . i i ~ ~2\1/2
be written in terms of the phase of the electron with respe&ii€ Separatrix are given by, =~ Suyey(1 + 4a7)'/? +

to the wakefield) = &, (z — vyot), i.e., 217, Wherey,, = (1 — 37,)7"/% anda, = as is as-
sumed. Where # 0, the separatrix distorts into fished-
2 (1-p06 1[0 9\ a2 shape islands. In particular, when< 0 (¢ > 0), the “fish
T ¢ (@ + ﬂza) 5> (D) tail" of the separatrix opens to the right (left).

A scenario by which the beat wave leads to trapping
wherek, = w,/c, v,0 = cB0 is the wakefield phase ve- in the plasma wave is the following. In the phase region
locity, 2 = kyz, 7 = wpyt, andB, = dib/dr + Byo. —7m/2 < ¢ < 0, the plasma electrons are flowing back-

The effects of three waves will be considered: a plasm§a'd,uy = —¢o cos9» < 0, and the electric field is accel-

wakefield¢ = (1) cose, and a forward and a back- €rating.E:/Ey = ¢osinyy < 0. Heree < 0 and the beat
ward injection laser pulse, both of the form = a,(z — wave buckets open to the right. Consider an electron that is

vgit) (sinb;e, + cosb;e,). Here,0; = k;z — w;t and the initially flowing backward and resides below the beat wave

amplitudesi; and are assumed to be slowly varying COm_separatrlx. Since the separatrix opens to the right, there ex-

ared to the phas@s andy. Also, k; andw; satisfyk; — ists open orbits which can take an electron from below to
ng(l - w2/22)1/2 Wheréa — '1 ;mda o 1 wﬁic:_h above the beat wave separatrix. Such an electron can ac-
inl1 7iies a proui veiocit 4 1—_66 T c%l;/w ’(U ~ " quire a sufficiently large positive velocity to allow trapping
v p_ y )g Fu?thermorﬁgl? B dggjr 52 I Zld é Cé’sw_ and acceleration in the plasma wave. These open phase
Vfﬁe;awgl—. 0 _ g — Aak(z_—i; 0 S the tJeQat h;ée space orbits, which provide the necessary path for electron
b z - pb P ' acceleration, can exist when the beat wave resides within

vpb:cﬁpb:Aw/Ak, andAk = k1 — ko ~ 2ky. —7T/2<¢<O

. In.the absenc_e Of. the |n](_ect|on pulses, eI.ectr(.)n MO~ An estimate for the threshold for injection into the wake-
tion in the Wakef'i'd 1S ?;a;cnbed by the Hamiltonian [g]field can be obtained by considering the effects of the
Hy = v = Bpo(y” = 1)7/* — ¢, whereg = g cost). \fr\%akefield and the beat wave individually and by requir-
. . B ing (i) the maximum energy of the beat wave separatrix
given by the S?P;”;ra”'ﬂw(% V) = Hu(ypo,m), Where o cood the minimum energy of the wakefield separatrix,
Ypo = (1=50) . The minimum momentum of an elec- Uomas > (Ad—L — Ag)/2, and (i) the minimum momen-

tron on the separatrix is given by,;, ~ (1/A¢— Ag)/2, - .
whereA¢ = o (1 + cos ), assumingy,oA¢ > 1and of the beat wave separatrix be less than the plasma

. 7 ~ B electron fluid momentumyy,,,;,, < —¢. These two condi-
\?v pr?ica ;elgnia;::g:lggagfe&rgﬁﬁ; g gtfcr);sﬁoa? ti]/e 2, hations imply that the beat wave separatrix overlaps both the
P kefield separatrix and the plasma fluid oscillation, thus

ﬁozeo c\:;l”a?: trr?tegedé;—;]ﬁ dbz(r:ggrr?;g:j g!ssrge;l e.'g‘ﬁ;‘;.r;l roviding a phase-space path for plasma electrons to be-
1owever, untrapp u 9 going a fiul ome trapped in the wakefield. For a given wakefield am-
tion with a momentumu; ~ —¢ (¢° < 1). Hence, at

¢ = 0, the plasma electrons are moving backward Witlﬂggggfg(;b Cf:fg'i";l(/'g inzjb(nz%plyat:de tﬁfégillg Q?ns_e
uy =~ —¢o, Which is far from the trapping threshold. 0 B 0 rb

: litude6é, > 3'/2—-2 of the injection pulse, where
The beat wave leads to formation of phase space buckgg o G0t b J P

2 ~2 2

(separatrices) of widthr/Ak ~ X\y/2, which are much eﬁ;ﬁ? Y <<_1’ a; < 1, an_dﬁpb < 1 were_as;sumfd. Eor

, i plego = 0.6 andS,, = 0.05imply ¢ = —1.3 — 27
shorter than those of the wakefield,§, thus allowing for andéa, > 0.11.
a separation of time scales. In particular, it can be shown
that both the transit tim2r /Aw of an untrapped electron
through a beat wave bucket and the synchrotron (bounce)
time 7/ (a1a2)'/?wo of a deeply trapped electron in a beatTo further evaluate the colliding laser injection method, the
wave bucket are much shorter than a plasma wave periatbtion of test particles in the combined wake and laser
27 /wp. Hence, on the time scale in which an electron infields was simulated by numerically solving Eq. (1). At
teracts with a single beat wave bucket, the wakefield can be = 0, the forward (backward) pulse profile (a-) is
approximated as static. a half-period of a sine wave with maximum amplitude

3 SIMULATION
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a1m (a2m), centered at) = ¥y < 0 (o > 0), with  proach unity. ForN, nearNy, however, space-charge ef-

length L, (L,). Test particles are loaded uniformly from fects become important and a self-consistent simulation is

P = 010 = tPmae With dyp/dr = —[,0 (initially  required.

at rest) and pushed from = 0t0 7 = Tn4.. AlsO, In summary, a method has been proposed and analyzed

é = o [1 — eXp(—¢2/ﬂ'2)] for ¢y <0. for injecting plasma electrons into a large wakefield using
To validate the analytical predictions for the trappingwo colliding laser pulses. Simulations of test electrons in

thresholds, a “near threshold” case was simulated withrescribed 1-D fields indicate the production of relativistic

wi/wp = 100, we/w, = 90, and¢y = 0.6, which for (> 25 MeV) electrons with bunch durations as short as 3

A\ = 2mc¢/w; = 1 pm impliesny ~ 107 cm2 and fs, energy spreads as small as 0.3%, and densities as high

E. = 0.6Ey ~ 19 GV/m. Also, ai,, = ag, = 0.3 asl0'®cm=.

(1.2x10Y" Wien?), Ly = Ly = X\, /8 (42fs),1); = —13.6

andy, = 21.4 (chosen so the beat wave and test parti- 4 ACKNOWLEDGEMENTS

cles overlap). After a propagation distancergf,,, = 300
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The bunch density is, ~ fi,noL./Ly, WhereL, ~
(L1 + Lo)/2 is the length of plasma that encounters the
overlapping pulses. Assuming that the 1-D results hold
for a pump laser of radiug, implies a total number of
trapped electrond’, ~ fi,.noL.mr2, .9.,N, ~ 7.7 x 10°
for Fig. 4 withry = 40 um. Note thatN, can be in-
creased by increasingy, ro, a1, (Via fi.) and, in partic-
ular, L, by increasing the duration of the backward pulse
L,. The ratio of N, to the theoretical beam loading limit
Ny [10] is Ny /No = firkpL.FEo/ E., which can easily ap-
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