
INTEGRATING COMMERCIAL AND LEGACY SYSTEMS WITH EPICS

J.O. Hill, LANL P.O. Box 1663, Los Alamos, NM 87545 USA
K.U. Kasemir, Universität Osnabrück, Fachbereich Physik, D-49069 Osnabrück, Germany

J.B. Kowalkowski, ANL 9700 South Cass Avenue, Argonne, IL 60439 USA

Abstract

The Experimental Physics and Industrial Control System
(EPICS) is a software toolkit, developed by a worldwide
collaboration, which significantly reduces the level of
effort required to implement a new control system.
Recent developments now also significantly reduce the
level of effort required to integrate commercial, legacy
and/or site-authored control systems with EPICS. This
paper will illustrate with an example both the level and
type of effort required to use EPICS with other control
system components as well as the benefits that may arise.

1 INTRODUCTION

1.1 What is EPICS

EPICS is a process control and data acquisition software
toolkit in use at over 70 sites world wide. The software is
designed for general utility and has been successfully
installed into a wide range of applications including
particle accelerators, experimental physics detectors,
astronomical observatories, municipal infrastructures,
petroleum refineries, and manufacturing. A scalable,
fault-tolerant system that follows the “standard model”[1]
can be created with the toolkit. Compilers and filters are
used to instantiate control algorithms in front-end
computers from function block and state-machine
formalism-based input. EPICS communication occurs
within a software layer called channel access (CA) that
follows the client server model and employs the internet
protocols (Figure 1).

Figure 1

EPICS Communications
Infrastructure

operator
interface

alarm
manager

data
archiver

 analysis
package

IO
controller

physics
model

control
system X

EPICS
protocols
over LAN

A mature set of client-side tools provide operator
interface, alarm handling, archival tasks, backup, restore,
state sequencing, and other capabilities. There is also an

expanding library of hardware device drivers that have
been written for use with EPICS. Recently we have seen a
number of sites working on generic physics and control
theory applications that will interface directly with
EPICS. All of these components taken together form a
toolkit that allows control system installation with a
minimum of low level coding. Details can be obtained on
the world-wide web[2] and from previous
papers[3][4][5][6]. EPICS is very unusual among control
system software packages in that it has been developed
by a collaborative effort of several laboratories and
industrial partners[7].

2 INTEGRATING WITH EPICS

2.1 Manipulating EPICS Process Variables

Many 3rd party products have been integrated with
EPICS. These include LABVIEW, PVWAVE/IDL,
SLGMS, WING Z, MATLAB, TCL/TK, DATAVIEWS,
MATHMATICA, and the SDDS toolkit. All of these
facilities have the ability to read and write external named
data. To integrate with EPICS, a simple code that
translated these requests into requests to read, write, and
monitor an EPICS process variable must be written. With
this translation code installed, the 3rd party product
becomes an EPICS client side tool that can directly
manipulate EPICS process variables.

Recently, many components of EPICS have been
ported to the PC environment[8]. This has opened new
opportunities to integrate EPICS with the many
inexpensive “shrink-wrapped” software components that
are available for the PC today. PC versions of the EPICS
libraries have been packaged as Microsoft Dynamic Link
Libraries (DLLs). This allows these EPICS components
to be called directly from almost any PC program with
macro language capabilities such as Excel, Visual Basic,
and many others. This does however require writing
small amounts of code.

A Microsoft Direct Data Exchange (DDE) server for
EPICS has also recently been written. Many PC based
programs can read, write, and monitor named data
through this interface. Many 3rd party PC products can
now integrated without writing any additional code. For
instance, to access an EPICS process variable with
Microsoft’s Excel we simply add a line as follows to our
spreadsheet.

==CaDDE|Get!'HighlyImportantMagnetCurrent'

Client
side

Server
Side

24610-7803-4376-X/98/$10.00  1998 IEEE

2.2 Your Data Can be an EPICS Process Variable

Recently a server level “Applications Programmers
Interface” (API) has been added to EPICS. After writing
a small amount of translation code conforming to this
API, any named data appears in the EPICS process
variable name space and can be directly manipulated as
an EPICS process variable. This allows a legacy system
to leverage the many EPICS client side tools that are
capable of directly manipulating EPICS process
variables. For example, the LANSCE control system at
LANL and the D3 control system at DESY both can
export their data into EPICS using this mechanism.

To export data into EPICS as an EPICS process
variable one must provide at least the functions in Table
1.

Table 1
Function

1 named process variable exists in subsystem test
2 create (or locate) instance of process variable
3 read from process variable
4 write to process variable

It is also necessary to inform EPICS when a process
variable is modified so that any clients monitoring that
variable will receive an update. To be compatible with the
widest range of EPICS clients a subsystem must also be
ready to respond to client requests for a standard set of
process variable attributes such as limits, units, time
stamp, and alarm status.

2.3 Adding New Function Blocks

A typical EPICS system has a real-time database resident
in a processor with direct access to the process IO. This
real-time database is made up of interconnected function
blocks which implement the logic specific to a particular
application of the system. A wide range of function
blocks are supplied with the system. They provide
execution semantics associated with various types of
process IO, calculation, multiplexing, fan-out, delay, data
reduction and many others. This list can be extended by
writing a record support module that plugs into well
defined software interface within the EPICS system.

2.4 Adding New Device Drivers

There are also well defined interfaces within EPICS for
adding new device drivers. To install a new device driver
the programmer must write a set of functions conforming
with the device support API of a particular function
block.

3 AN EXAMPLE

A demonstration of the famous nonlinear cart and
pendulum problem from control theory was implemented
on a portable laptop PC using only EPICS, the EPICS

DDE server, and demonstration copies of two commercial
products for the PC (Figure 2).

Figure 2
L o o k o u t M A T L A B

E P I C S
S e r v e r

E P I C S
I n t e r n e t
P r o t o c o l s

E P I C S D D E S e r v e r

An evaluation copy of National Instrument’s “Lookout”
was used to implement the operator console for the
demonstration. An evaluation copy of “MATLAB” from
Math Works was used to implement a model of the cart
and pendulum dynamic system (Figure 3), and also an

LQR feedback compensator for
this system (Figure 4). The
dynamics of the system can be
seen in Equations 1 and 2. All
communication between
MATLAB and Lookout occurred
with the assistance of an EPICS
server and an EPICS DDE server.
The model and the compensator
were updated in “pseudo real-

time” in response to force input u from the operator
console. The demonstration system can be controlled in a
manual mode (without the aid of the LQR compensator)
and also a closed loop mode (with the aid of the LQR

()&& (&&cos && sin)M m x ml u+ + - =q q q q
2 1

m x l g d(&&cos && sin)q q q+ - = 2

compensator). The model is updated within MATLAB
100 times a second in response to a periodic DDE update
for the force input u from the EPICS server.

Figure 4

&x

&

x
y-K S tate

E stim ator

C art /
Pendulum

x

y
u

L QR C ompensated System

The demonstration was implemented in 2 man weeks by
an individual integrating these products together with
EPICS for the first time. Most of the labor was devoted to
drawing the operator screen within Lookout, modeling
the linearized cart and pendulum system in MATLAB,
and designing an LQR compensator using the MATLAB
control systems toolbox. No new EPICS code was written
for this demonstration. Figure 5 shows the response of the

Figure 3

y

x

u M

m

l
q

d

2462

compensated system to a step on the u force vector on the
cart.

4 CONCLUSIONS

EPICS is an open modular system that was designed
for extension. Nearly all components within the system
are replaceable. It is possible to manipulate EPICS
process variables from a system that knows very little
about EPICS. Likewise a system mostly unaware of
EPICS can export its data into EPICS as EPICS process
variables. Within two weeks one of the authors was able
to integrate two commercial PC based components and
create a non-trivial control theory demonstration that was
updated in pseudo real time and hosted solely on a laptop
PC platform. The public interface to EPICS only supports
sending read, write, and monitor messages to a process
variable and its associated attributes. This interface is
both primitive and concise. It has been suggested that this
interface is therefore old technology and not suitable for
new projects, and we will counter that it is compatible
with a large number of commercial and legacy systems
that exist today. When optimizing and debugging a
control process it is important for operators to be able to
directly examine and record the internal state of the
system. We have positive expectations for emerging high

level object oriented standards, but we also see the
continuing value of a high performance process variable
based interface.

[1] B. Kuiper: ‘Issues in Accelerator Controls’, Proc.
ICALEPCS, Tsukuba, Japan, 1991, pp 602-611.

[2] W. McDowell et al.: ‘EPICS Home Page’,
“http://www.aps.anl.gov/asd/controls/epics/EpicsDoc
umentation/WWWPages/EpicsFrames.html”

 [3] L. Dalesio et al.: ‘The Experimental Physics and
Industrial Control System Architecture: Past, Present,
and Future’, Proc. ICALEPCS, Berlin, Germany,
1993, pp 179-184.

[4] L. Dalesio et al: ‘The Los Alamos Accelerator Control
System Database: A Generic Instrumentation
Interface’, Proc. ICALEPCS, Vancouver, Canada,
1989, pp 405-407.

[5] J. Hill: ‘Channel Access: A Software Bus for the
LAACS’, Proc. ICALEPCS, Vancouver, Canada,
1989, pp 352-355.

[6] J. Hill: ‘EPICS Communication Loss Management’,
Proc. ICALEPCS, Berlin, Germany, 1993, pp 218-
220.

[7] M. Knott et al: ‘EPICS: A Control System Software
Co-development Success Story’, Proc. ICALEPCS,
Berlin, Germany, 1993, pp 486-491.

[8] Chris Timossi performed the initial port of several of
the EPICS components to the PC environment.

Figure 5

2463

