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The effects of incoherent space charge forces on the fast d*0
head-tail instability are studied numerically. Itis found that L X
incoherent space charge fprces can dramatically increase + = Z%’W(m — 7). (4)
the threshold current for a fixed wall impedance. N =

Jj=1

1 PHYSICAL MODEL AND SIMULATION In equation 4 the new functions(r) and W (r) are in-

ALGORITHM troduced to smooth out the particle-particle forces. If one
{ﬁges the limitV. — oo and then takes the limits of(r)
going to a delta function and’(r) — W (r), equation (2)

is recovered.

The number of macro-particles is controlled using the

For the purposes of beam dynamics one transverse and
longitudinal degrees of freedom are considered. Léé¢-
note the machine azimuth, which increase@byach turn
and will be used as the time-like variable. The time is de- e IS 3
noted byt andwy is the angular revolution frequency of parametemn,. The initial longitudinal varl'able.srk, and

a synchronous particle. Consider a single particle and 18 = 47/(Qsdf), are selected by considering the sub-
7(6) = t — 8/wo denote the time delay between this parS€t Of lattice points(Ty, Vi) = ((kr + 1/2)/ne, (kv +
ticle reachingd and the synchronous particle reachihg 1/2)/7¢), With k- andk, integers, which are inside the

The longitudinal equation of motion for a single particle isunit circle. The initial longitudinal coordinates of a macro
approximated as particle are derived via

dcr (ko 00) = L(T, Vi) (1= (1 —R2)1/(1+u))1/2 /R

% +Qs7— — 0, (1) ks Uk ks Vk k k>
where the parameter determines the bunch shape and
4R2 — T2 + V2. The smoothed density in longitudinal
phase space is proportional(tb? — 72 — »?)#, and results

in a line densityx (L?> — 72)#*+1/2, During the simula-

whereQ) is the synchrotron tune. The single particle equ
tion of motion for the transverse degree of freedons
approximated as

P tion the longitudinal variables were updated once per turn
perii —Q%x + Coep(0,7)(x— < x(0,7) >) using a rotation with anglerQ,. Figure 1 illustrates the

selection of longitudinal coordinates.
7 , , , , The initial values of the transverse variables and

+ / dr'W(r —7)p(0,7") <z(0,7) >. (@) ,, = dzxy, /df were obtained using a random number gener-

-T ator. The transverse dynamics consists of two parts, single
particle dynamics and multiparticle dynamics. The scheme
involves a single particle update followed by a multiparticle
ﬁ%ﬁate and is repeatdd times per turn. The application of
collective forces once per turn, as is usually done in lepton
machines [1], is not sufficient since space charge tune shifts
Sre large. The single particle update is given by a trans-

In equation (2)9.. is the bare betatrott/;. > 0 character-

izes the peak strength of the incoherent space charge for
andp(f,7) is the line density of the particles which van-
ishes for|r| > T, the half length of the bunch. The trans-
verse center of the beam as a function of azimuth and d
lay is < z(#,7) >, and the causal coherent forces due t

wall impedances are characterized by the wake potent?el: matrix with a bare betatron phase advade€), /M.

) ! S e multiparticle update consists of a kick from the space
W(r). Extending the mpdel tq include chromatl_cny andcharge and wake forces. The space charge kick is given by
long range wake forces is straightforward, but will not be
considered here. N
Equations (1) and (2) are solved by particle tracking. The F,=C,. Z(xk —z)\(1k — 75), (5)
bunch is modeled a8’ interacting macro-particles. The =1
equations of motion fokth macro-particle are taken to be

whereC,, = 2rC,./NM. The kick due to the wake po-

@ = —Q°7 (3) tentialis
a0 o 2w N
Fy= = a;W(n — 7). (6)
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Figure 1: Initial longitudinal coordinates fer, = 10 and

p = 1. There are316 ~ 7n3 macro-particles.

On the surface, equations (5) and (6) appear to require
O(N?) operations to obtain the kicks for @l macroparti-
cles. This would make simulations with largeuntenable.
For appropriate choices of(r) and W (r) the operation
count drops t@ (N log(N)). The trick is to generalize the

N
S2f = Z .ﬁj@a(Tk =), (8)

I j=k+1
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o 6 0 0000 6 o Note that these recurrence relations are stable and that the
< <
IR IR P, kicks for all NV particles requireD(N) calculations after
the particles have been sorted in arrival time. The sorting

procedure is done when thg s are updated, once per turn.
Next, consider the kick due to the transverse wake field.

A smoothed version of the step function wake given by

W(r)=Wforr >0andW(r) =0forT <0is

W(r) = Cw / Mr")dr, (10)

whereCyy is a constant andi(t) = exp(—a|r|), as before.
Adjusting the constant so th&'(r) — W ast — o
yields

phasor technique which is usually employed to retain the 27 W

cumulative effects of multiple passages through a resonant

structure[2].
The smoothing functions

where [ Adr =
A(7), and

with 4/a = 7, can be summed efficiently. The algorithm Fj, = ijWr sin[o(m, — 75)]e

2/a = 7. is the equivalent duration of

A7) = exp(—al7]),

A2(7) = (1 + alr]) exp(—alr])

Fy =337 (S0, — 52, /24 82 /2],  (11)

where i

j=1
For a resonator impedance with resonant frequenand
quality factor@, the wake kick on particlé is given by

k
- wT(Tk - Tj)/QQr’

for A2(7) is an obvious generalization of the algorithm for j=1

A(7), which is presented in detail. ~ . ,
Sort the values of; so thatr; < 7,1, which is an Wherew = w,/1 —1/4Q7. Usingexp(ip) = cos(¢) +

(12)

O(Nlog N) process with standard algorithms[3]. EquaZ sin(¢) @ complex sum similar t62," is obtained.
tion (5) is given by
) 2 SIMULATION RESULTS
Fy./Cse = 2,81, — S2, +x,S1F — 528, (7)

The algorithm described in the previous section has been

where implemented in fortran code. Results with the smooth-
k ing functionz(7) and the step function wake will be pre-
S1, = Zea(Tj - Tk), sented. Values aofy, i, Qs, 7, Qz, M, W, and the peak
=1 value of the incoherent space charge tune ghdft,. were
k chosen. For the results presented hefre= 24, Q. = 2.9,
S2, = ijea(%‘ - Tk), and@, = 0.01 — 0.1.
= The simulations were allowed to continue until the be-
N tatron oscillation showed a clear exponential growth rate.
sit = % (T = 75). The growth rate of the exponential was identified as the
Pl growth rate of the most unstable mode. The values of the
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Figure 2: Im(Q./Qs) versust./T with = 1 and 0 2 4 6 8 10
dQsc/Qs

AQs./Qs = 20 for various values ofi;: n, = 25, solid

line; ny, = 50, long dashn, = 100, short dash. The value Figure 3: Im(Q./Qs) VersusAQ,./Q, with i = 1 for

of the step function wake was five times larger than thg, ious values Oflz.; ne = 25, solid Iirie'ng — 50, long

threshold value witiA Q. = 0. dash;n, = 100, short dash. The value of the step function
wake was 2.5 times larger than the threshold value with

growth rate were insensitive to the seed value of the raﬁéQSC =0.

dom number generator and were the same in both single
and double precision.

Figure 2 shows the growth rate of the most unstable
mode as a function of,. /T for a system which would be
highly unstable in the absence of space charge forces. From
the figure the best values af were0.05, 0.02 and0.01 for 10 T T T T T
ny = 25, 50, and 100, respectively. {

Figure 3 showdm(Q./Qs) versusAQs./qs. While P
there is a noticeable rise in growth rate after the initial de- 8 | e
cayIm(Q,/Q) stays below 1% of its value in the absence g
of space charge. A threshold value®f),./Qs = 2 is in-
ferred from this plot

Figure 4 is the main result. The threshold value of the _
wake potential increases with space charge tune shift. Re-%
sults for smooth(x = 1) and boxcany = —1/2) line =
densities are similar. If real beams behave in this way the
fast head tail instability will rarely, if ever, be seen in low
energy hadron machines.
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