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Abstract

Longitudinal coupled bunch instabilities are a major obsta-
cle for the increase of beam current in modern electron stor-
age rings. At the ESRF, threshold limits for multi-bunch
operation have been considerably increased by using frac-
tional fillings, from about 60 mA for a homogeneous filling
to well beyond the nominal intensity of 200 mA for a fill-
ing of one third of the circumference. The gap in the bunch
train induces a modulation of the cavity voltage and a sub-
sequent spread in synchrotron frequencies. This results in
additional Landau damping. An appropriate set of coupled
equations, which completely models the problem, has been
derived. With slight simplifications one obtains analytical
formulae which still accurately describe the observed ef-
fect. The theoretical results have been soundly confirmed
by experiments carried out at the ESRF.

1 INTRODUCTION

Longitudinal coupled bunch instabilities (LCBIs) arise
from the resonant coupling of multi-bunch modes (MBMs)
with higher order modes (HOMs) in RF cavities. Avoiding
the resonance by tuning away the HOMs is one remedy, re-
duction of the coupling by damping the HOM or staying at
low beam currents is another. In the present paper we show
how, additionally, Landau damping [1] can be used in high
energy electron storage rings to maintain strong beam cur-
rent levels. It is routinely applied at the ESRF in combina-
tion with a dedicated temperature regulation system [2].

In section 2 we use a set of coupled equations to treat the
combined effect of Landau damping coming from different
synchrotron frequencies of the individual bunches and the
strong natural synchrotron damping in a high energy stor-
age ring. We also present methods to accurately calculate
current thresholds. Section 3 gives results on the determi-
nation of the frequency spread induced by the beam loading
due to a fractional filling. We employ this to compute the
threshold current. In section 4 we present experimental re-
sults that validate our theory.

Unless stated otherwise we use standard ESRF parame-
ters [2], [3]. Notably the revolution time isT0 = 2.8 µs,
the revolution frequencyω0/(2π) = 355 kHz, the energy
E0 = 6 GeV, the loss per turnU0 = 4.75 MeV, the momen-
tum compaction factorα = 1.9 · 10−4, the harmonic num-
ber h = 992, the natural damping constantδn = 277 Hz
the mean synchrotron frequencyfs = ωs/(2π) = 1.97 kHz
and the peak cavity voltagêV = 8 MV. HOMs with shunt
impedances up to about 4 MΩ have to be considered at the
ESRF, mainly at 500 and 910 MHz.

2 LCBI MODEL WITH A SPREAD IN
SYNCHROTRON FREQUENCIES

2.1 Interaction Equations

For short bunches, rigid bunch MBMs are responsible for
LCBIs. We model the beam in the storage ring asN rigid
bunches, obeying synchrotron equations with frequencies
ωsk spread over a range∆ωs:

τ̈k + 2δnτ̇k + ω2
skτk = 0 , k = 1, . . . , N (1)

τk is the temporal displacement of bunchk w.r.t. a syn-
chronous particle at phaseφsk. It is well known that

δn ≈ U0

T0E0
, ω2

sk =
α

T0E0/e

dV

dτ

∣∣∣∣
φsk

. (2)

Distinctωsk arise from a modulation ofdV/dτ andφsk.
An MBM giving rise to a synchrotron sideband in the

beam spectrum at(n + mh)ω0 + ω can be described by

τk(t) = τ̂ke j(ωt+2πnk/h) , k = 1, . . . , N (3)

wheren is the MBM number,̂τk the complex amplitude
andω the common complex frequency of the bunch oscilla-
tion. Due to its highQ, an HOM is excited only by spectral
lines nearωHOM. Developing the phase modulated beam
signal up to first order yields an expression for the HOM-
voltage to be added to the energy budget of each bunch,
linear in eacĥτk. Using this and the ansatz (3) in (1), we
acquire a system of coupled equations for theτ̂k andω:

(−ω2 + j2ωδn + ω2
sk)τ̂k = jH

N∑
i=1

Iiτ̂i (4)

with k = 1, . . . , N . HereIi is the DC current in bunchi,
the total current isIb =

∑N
i=1 Ii. H is given by

H = ωHOMZHOM
α

T0E0/e
(5)

with ZHOM the impedance of the HOM (linac-Ohms).

2.2 Dispersion Relation

Eq. (4) leads to the dispersion relation

1 =
N∑

1=k

jHIk

ω2
sk − ω2 + 2δnjω

. (DR)

Its N solutionsωi are the eigenfrequencies of the system
(4). For small currents theωi are nearωsi + jδn, increas-
ing Ib will move them. The stability limit is reached at
the threshold currentIth, where the first of theωi becomes
purely real. Fig. 1 shows how the rhs of (DR) maps the
positive real axis (0 < ω < ∞). As in feedback theory, the
system is instable if the critical point 1 is encircled.
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Stability traces,
rhs of (DR)

RHOM = 2 MΩ

16 bunches

The instability
limit 1 is reached
at higher currents,

if ∆fs > 0.

2.3 Eigenvalue Approach

The eigenvalues(µi) of the matrix obtained from eq. (4)
jHI1 − ω2

s1 jHI2 · · · jHIN

jHI1 jHI2 − ω2
s2 · · · jHIN

...
...

...
...

jHI1 jHI2 · · · jHIN − ω2
sN


are related to the solutionsωi by µi = ω2

i − 2δnjωi and
it is easier to compute them than to evaluate (DR) directly.
An iteration in Ib yields Ith, as shown in Fig. 2. This
illustrates best what Landau damping means here: because
of the frequency spread energy is continuously transferred
from the HOM excited MBM to the other MBMs. A narrow
band feedback on then = 0 MBM could be applied to
damp the LCBI, as is addressed in [4].

Using natural damping we are reversing this idea:all
MBMs now damp thesingle MBM that actively partici-
pates in the LCBI. In fact, the MBMs that do not couple
back to the HOM dissipate their energy freely due toδn.
Note that this scheme attacksanyLCBI.
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Figure 2: Evolution of theωi with Ib.
RHOM = 2 MΩ, 16 bunches,∆fs = 300 kHz.

2.4 Simplifications for the Calculation ofIth

In the worst case the crest of the HOM impedance will be
exactly on the synchrotron sideband, thenH is real. Know-
ing that at the threshold the dominating solutionω of (DR)

is real, we have two equations forIth andω:

Ith =
N

2δnHω

(
N∑

k=1

Ik/Ith

(ω2
sk − ω2)2 + 4δ2

nω2

)−1

(6)

0 =
N∑

k=1

Ik(ω2
sk − ω2)

(ω2
sk − ω2)2 + 4δ2

nω2δn
. (7)

They are appropriate numerically for smallN .
For equally populated bunches and sufficient natural

damping,ω will be given approximately by the root mean
squareωs =

√
1/N

∑N
k=1 ω2

sk. We write the total fre-
quency spread as∆ωs and assume an even distribution in
frequencies. Then in the case of many bunches we can re-
place the sum in eq. (6) by an integral and find a simple
analytical formula:

Ith(∆ωs) =
ωs

H

∆ωs

arctan(∆ωsτnat/2)
. (8)

Eq. (8) is a very good approximation for solutions obtained
by the eigenvalue method or eqs. (6) and (7), as long as
∆ωs/N � ωs. Note that

Ith(∆ωs)

 → 2δnωs/H for ∆ωs → 0

≈ 2ωs

πH

(
∆ωs + 4

δn

π

)
for ∆ωs � 2δn

For ∆ωs → 0 the well known threshold formula is recov-
ered, for large spreads the contributions of natural damping
and Landau damping add up.

2.5 Threshold Current Calculations

As can be perceived in fig. 3, Landau damping in con-
junction with natural damping is more effective at higher
energies and for lower values ofRHOM. For the ESRF it
allows an increase of the beam current by more than a fac-
tor 3. Low energy machines, however, may have difficulties
in countering strong HOMs just by using this effect, as it
does not change orders of magnitude.
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Figure 3:Ith(∆ωs) from eq. (8),fHOM = 500 MHz.

3 EFFECT OF FRACTIONAL FILLINGS

When filling only a fraction of the storage ring circumfer-
ence, beam loading strongly modulates the cavity voltage.
This gives the bunches different zero motion positions (see
fig. 4) and different synchrotron frequencies (cf. eq. (2)).
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Figure 4: Instability in a 1/3 filling.
Streak camera image, 154 mA, HOM at 911 MHz

The resulting increase of the instability threshold can be
calculated with the results of the preceding section if we
have quantitative knowledge of the distribution of theωsk.

Since the beam loading itself is influenced by the posi-
tion of each bunch, we have contrived an iterative process
which converges towards the zero motion positions of all
bunches. This fix-point problem has been treated numeri-
cally: fig. 5 shows how the overall spread changes withIb

and the filling ratiop.
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Figure 5:∆ωs(p), calculated numerically.

Knowingωsk(Ib, p), we can determine the threshold cur-
rent by solving the following equation forIb:

Ib = Ith [(ωsk(Ib, p))k=1,...,N ] (9)

whereIth from eqs. (6) or (8) is used. Fig. 6 showsIth(p)
in analogy to fig. 3. Since raising the beam current in-
creases the spread of theωsk, self-stabilization is observed
for smaller fractions and nonviolent HOMs: Landau damp-
ing overcomes the normal LCBI growth rate for any current
(e.g. at 6 GeV forp ≤ 0.4, if RHOM ≤ 2 MΩ).
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Figure 6:Ith(p) from eq. (9),fHOM = 500 MHz.

4 EXPERIMENTAL RESULTS
The theoretical results presented so far have been verified
by experiments at the ESRF. By means of the tempera-
ture control system of the RF-cavities we deliberately tuned

HOMs onto a synchrotron sideband. Varying the beam cur-
rent and observing the presence or absence of longitudinal
oscillations (cf. Fig. 4) the threshold current was deter-
mined. We present some results for an LCBI due to an
HOM at 500 MHz and MBM number 417.
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Figure 7:Ith(∆fs), theory and experiment.

A direct validation of the results in section 2 was pos-
sible at 5 GeV by operating one of the two RF units at
(h + 1)ω0, cf. fig. 7 and [2]. The spread in synchrotron
frequencies due to the modulation∆V̂ is obtained from
∆ωs/ωs = (1 + tan2 φs)∆V̂ /(2V̂ ).
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Figure 8:Ith(p), theory and experiment.

Fig. 8 shows a striking confirmation of the results from
section 3. However, we experienced some deviations for
fractionsp ∼< 0.4 on strong HOMs around 910 MHz, with
measured thresholds below theoretical predictions.

5 CONCLUSIONS AND OUTLOOK
A theory of Landau damping of LCBIs incorporating natu-
ral damping was elaborated and the spread in synchrotron
frequencies from beam loading due to fractional fillings
was computed. This was verified by experiments. Frac-
tional fillings are a simple and efficient way to fight LCBIs
in high energy storage rings, our results permit the deliber-
ate choice of the appropriate filling ratio at the ESRF [3].
However, to allow high intensity operation in homogeneous
fillings at 6 GeV, direct modulation is envisaged in the near
future [2].
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