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Abstract

It is interesting to study the matching capability of a triplet
for a large range of parameters and to cover all the possi-
ble solutions. Fully analytical treatments can be used for
this purpose, when working with the thin lens approxima-
tion. Closed solutions and the conditions in which they
exist are described for the special case of triplets with a
symmetric geometrical arrangement. They define all pos-
sible matchings, which correspond to the requests or limits
on the Twiss parameters that are specified, and then de-
fine the range of values that are obtainable for the betatron
functions. Numerical extension to thick lenses gives the
complete solutions for the retained cases. Applications are
presented on insertion and lattice problems, with emphasis
on the design for a possible isochronous ring that is part of
the injection chain of the CLIC drive beam.

1 INTRODUCTION

The design of a new type of isochronous ring for the in-
jection chain of the CLIC drive beam [1] needs a matching
section between two adjacent isochronous cells. The pur-
pose of this section is twofold. First the betatron function at
the entrance and at the exit of it should have the same value
and its slope should be equal and opposite. Second the to-
tal phase advance including the isochronous cell should be
nπ/m wheren andm are small integers, in order to mini-
mize the geometrical aberrations. The symmetry of the be-
tatron function leads quite naturally to choose a symmetric
lattice for the matching section. We selected a symmetric
triplet for its compactness and because it provides the re-
quired degrees of freedom. Several authors [2-7] have ob-
tained analytical solutions in the thin-lens approximation
for different configurations of quadrupole multiplets which
are more general than a simple symmetric triplet. Their
number of free variables is different from the six degrees of
freedom of the transfer matrix and implies extra constraints
or a mismatch factor [8]. In addition the adaptation of the
analytical development of the general triplet to the symmet-
ric case is cumbersome and does not take advantage of the
lattice symmetry in an easy way.
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Figure 1: Schematic of a symmetric triplet

A geometrically symmetric triplet as shown in Fig.1 has

four free variables (the two drift lengthsl1, l3 and the mag-
netic gradientsG2, G4 respectively of the first and half of
the second quadrupole). It can easily be proved [9] that
the diagonal elements of the transfer matrix for each plane
are equal. Thus the number of independent values which
can be fixed by selecting the Twiss parameters at the en-
trance and at the exit of the triplet is also four. The number
of solutions is finite and does not depend upon additional
assumptions. This observation has convinced us that a spe-
cific study would be useful not only for the design of an
isochronous ring but also to explore, in an exaustive way,
all the existing solutions for a more general matching prob-
lem. A particularly interesting one is related to the experi-
mental insertions of collider rings such as the LHC. Triplets
are indeed conveniently used to match the double waist at
the interaction point to the rest of the lattice on either side.

2 COMPATIBLE BETATRON FUNCTIONS FOR A
SYMMETRIC TRIPLET

The equality of the diagonal elements of the transfer matrix
for each plane forces an important constraint on the beta-
tron function in that plane at the entrance and at the exit
of a symmetric triplet. Neglecting the special case when
the phase advance is an odd multiple ofπ we may distin-
guish two situations. The first one which can be called a
mirror symmetry triplet occurs when the betatron function
has equal values and its derivative has opposite values, the
phase advance being a free parameter. This is the case of
interest for building up an isochronous module which may
be chained up to form a ring. An example is shown in Fig.
2. The second configuration occurs when the betatron func-
tion has different values at each end of the symmetric triplet
with its derivatives being free parameters. This generality
is limited by the fact that the phase advance can no longer
be freely chosen and is given by :

cotµ =
β2α1 + β1α2

β1 − β2

whereα1, β1 and α2, β2 are the Twiss functions at the
entrance and exit of the triplet (see Fig. 1) respectively.
Thus we have the choice only between two phase advances
which differ byπ. The more general case, which will be
called a matching triplet can be of interest in several types
of insertion. Its application to a collider final focus, where
a round beam at the interaction point is matched to the stan-
dard periodic FODO cell, has been studied. An example is
given in Figs 3 and 4.
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Figure 2: Horizontal and verticalβ-functions of a symmet-
ric triplet which inverts the slopes of these functions.
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Figure 3: Hor. and vert.β-functions of the first solution of
a symmetric triplet which transforms a round beam with a
waist into a round beam with opposite divergences.

3 DETERMINATION OF THE FOUR
PARAMETERS OF A SYMMETRIC TRIPLET

In the thin lens approximation, the transfer matrices for the
horizontal and vertical planes can be expressed as functions
of the two drift lengthsl1, l3 and the quadrupole strengths
g2 = K2lq, g4 = K4lq wherelq is the quadrupole length
andK2,K4 are the normalized gradients. To further sim-
plify the problem the corresponding elements in each plane
can be combined by taking half the sum and half the differ-
ence of those in the first column (only two elements in each
transfer matrix are actually independent). Thus we obtain
the following system of equations:




c`1 + ` 2
3 g2g4 = a

d`1 + `3(g2 + g4) = b
`3g2(g2 + 2g4) = c
` 2
3 g 2

2 g4 + g2 + g4 = d ,

(1)
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Figure 4: Hor. and vert.β-functions of the second solution
of a symmetric triplet which transforms a round beam with
a waist into a round beam with opposite divergences.

wherea, b, c, d are defined by:

a = (th,11 + tv,11 − 2)/4 , b = (th,11 − tv,11)/4

c = (th,21 + tv,21)/4 , d = (th,21 − tv,21)/4 .

whereth,nm andtv,nm are the elements of the horizontal
and vertical transfer matrices respectively. The full analysis
of (1) can be found in [9]. Neglecting the very special cases
when eitherc = 0 or c = ±d and assumingbc − ad 6= 0,
the general solution of (1) is given by :

`1 =
1

c2 − d2

[
(bc − ad)z − (bd − ac)

]

g2 =
c2 − d2

(bc − ad)(1 − z2)

`3 =
(bc − ad)(1 − z2)

z(c2 − d2)

g4 =
z2(d − cz)

1 − z2

wherez is a solution of the cubic equation

z3 − 2d

c
z2 + z +

d2 − c2

c(bc − ad)
= 0 .

Of course only real values of z chosen such that the corre-
sponding drift lengths are positive, should be retained.

4 APPLICATIONS

The motivation of the study was to obtain the parameters
of the matching triplet between two isochronous modules
providing given phase advances in the two planes. The be-
tatron function and its derivative were determined by the
isochronous module while the phase advances were chosen
in such a way that the total phase advances for the periodic
cell wereπ/3 in the horizontal plane and3π/2 in the ver-
tical plane. Thus every three cells in the horizontal plane
and two in the vertical plane, kicks due to field errors may
cancel out. This is a typical application of mirror symmetry
and the results are quite good (Fig. 2). A second interesting
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application is the matching from an interaction point to the
standard FODO lattice. This would be schematically the
case in circular colliders such as LHC when are neglected
the constraints imposed on the value of the first drift length.
At the interaction point, the values of the betatron functions
in the two planes are equal and relatively small (“lowβ”)
while their derivatives are null. At the exit to the triplet it is
assumed that the betatron functions in the two planes cross
each other with opposite slopes. Thus,

βh,1 = βv,1 = β1 , αh,1 = αh,2 = 0

βh,2 = βv,2 = β2 , αh,2 = −αh,1 = α2

The horizontal and vertical transfer matrices are

Th = ±1/α0

[
α2 β1 − β2

γ1 − γ2 α2

]

Tv = ±1/α0

[ −α2 β1 − β2

γ1 − γ2 −α2

]

whereα0 =
√

β1γ2 + β2γ1 − 2 andγ1 = 1/β1, γ2 =
(1 + α2

2)/β2. It is possible to show [11] that two and only
two sets of triplet parameters satisfy these transfer matrices
if we neglect a difference ofπ in the corresponding phase
advances. The only condition is thatα2 should not be zero
or equal to

√
(β2 − β1)/β1. These two sets of parameters

are given by:

a) l1 = α2zr,1+α0
|γ1−γ2|

g2 = γ1−γ2
α2

1
1−z2

r,1

l3 = 2l1/z2
r,1

g4 = α2z3
r,1g2

2α0

wherezr,1 is the (only) real solution of the cubic equation
z3 + z + 2α0/α2 = 0

b) f = 1/g2 = α2
γ1−γ2

l1 = |f/α2|
√

α0(α0 + |α2|)
l3 = |f |√1 + |α2/α0|

g4 = −g2/2 .

This treatment has been included in the package
BeamOpticsdeveloped using the Mathematica language
[10]. Whenl1 is imposed the approach described here can
be extended by adding a drift of free length at the exit of
such a symmetric triplet. It is then possible to examine
the behaviour of important quantities such as the length
of this drift and the maximum value reached by the beta-
tron functions inside the triplet; and this according to the
variation of the triplet parameters in a predefined range,
and to specific constraints on the betatron functions at the
end of the added drift. Two cases have been investigated

: waist in one plane and equal values of the betatron func-
tion with opposite slopes. All the possible solutions can be
determined for canonical triplets (g4 = −g2), general sym-
metric triplets and even triplets where the third quadrupole
strength is slightly modified. This study was applied to in-
sertions of LHC type and provided interesting results on
the ranges of acceptable triplet parameters [11].

5 CONCLUSIONS

It has been shown that in the thin lens approximation a geo-
metrically symmetric triplet is a structure simple enough to
be handled analytically and yet powerful enough to be ap-
plied to several interesting and quite different lattices. The
method provides in a direct way all the existing solutions
permitting a complete study of the required lattice. Exis-
tence conditions can only be made explicit in special cases
but readily constructed as an abacus whenever needed. It
can be shown [9] that the extension to thick lenses is eas-
ily obtained by solving a system of two nonlinear equa-
tions functions of the normalized gradientsK2,K4. Of
course such results are obtainable also by standard numeri-
cal matching programs although they may have difficulties
in converging if not conveniently guided. Moreover their
use is cumbersome and time consuming when included in
a chain of specific codes written in other languages. The
thin lens approximation obtained by the method described
here is an excellent starting point for such algorithms.
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