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Abstract

A nonlinear equation is derived that governs the evolution
of the amplitude of unstable oscillations with account of
quantum diffusion effects due to the synchrotron radiation.
Numerical solutions to this equation predict a variety of
possible scenarios of nonlinear evolution of the instability
some of which are in good qualitative agreement with ex-
perimental observations.

1 INTRODUCTION

Microwave single bunch instability in circular accelerators
has been observed in many machines. The instability usu-
ally arises when the number of particles in the bunch ex-
ceeds some critical value,Nc, which varies depending on
the parameters of the accelerating regime.

Recent observations on the SLC damping rings at SLAC
[1] with a new low-impedance vacuum chamber revealed
new interesting features of the instability. In some cases,
after initial exponential growth, the instability eventually
saturated at a level that remained constant through the ac-
cumulation cycle. In other regimes, relaxation-type oscil-
lations were measured in nonlinear phase of the instability.
In many cases, the instability was characterized by a fre-
quency close to the second harmonic of the synchrotron
oscillations.

Several attempts have been made to address the nonlin-
ear stage of the instability [2, 3, 4] based on either com-
puter simulations or some specific assumptions regarding
the structure of the unstable mode. An attempt of a more
general consideration of the problem is carried out in this
paper. We adopt an approach recently developed in plasma
physics for analysis of nonlinear behavior of weakly un-
stable modes in dynamic systems [5]. Assuming that the
growth rate of the instability is much smaller than its fre-
quency, we find a time dependent solution to Vlasov equa-
tion and derive an equation for the complex amplitude of
the oscillations valid in the nonlinear regime. Numeri-
cal solutions to this equation predict a variety of possible
scenarios of nonlinear evolution of the instability some of
which are in good qualitative agreement with experimental
observations.

2 BASIC EQUATIONS

We start from the equations of motion in longitudinal di-
rection (see, e.g., Ref. [6] ):

ż = −cηδ, δ̇ = K (z, t) , (1)

wherez is the longitudinal coordinate,δ is the relative en-
ergy deviation,η is the slip factor, the dot indicates differ-
entiation with respect to timet, and

K (z, t) =
ω2

s0

ηc
z − re

T0γ

∞∫
z

dz′n (z′, t)w (z′ − z). (2)

In Eq. (2),ωs0 denotes the unperturbed synchrotron fre-
quency,T0 is the revolution period,re is the classical elec-
tron radius,γ is the relativistic factor,n (z, t) is the longi-
tudinal beam density,

∫ ∞
−∞ n (z, t) dz = N , whereN is the

number of particles in the bunch, andw (z) is the longitu-
dinal wake function. The first term in Eq. (2) corresponds
to the potential of the accelerating voltage, and the second
term describes the wakefield generated by the bunch.

The distribution functionψ (z, δ, t) satisfies the Vlasov
equation with a Fokker-Planck “collision” term on the right
hand side,

∂ψ

∂t
+ {H,ψ} = R, (3)

where we have the Poisson brackets on the left hand side,
H is the Hamiltonian corresponding to the equations of
motion Eq. (1), andR describes the effect of the syn-
chrotron radiation,

R =
∂

∂δ

(
γDψδ + κ

∂ψ

∂δ

)
. (4)

In Eq. (4),γD is the damping time for the amplitude of the
synchrotron oscillations, andκ is the diffusion coefficient
associated with the quantum nature of the radiation. In the
equilibrium state, the distribution functionψ is given by
Haissinski solution,

ψ (z, δ) = const × exp
(−H0 (z,−δ)/cησ2

E

)
, (5)

whereσE =
√
κ/γD is the rms energy spread of the

beam in the absence of the wake, andH0 is the equilibrium
Hamiltonian.

It is convenient to introduce dimensionless variables,
x = z/σz, p = −δ/σE , τ = tωs0, andF = σzψ,
whereσz is the rms length of the beam without wake,
σz = σE |η|c/ωs0. In these variables, the HamiltonianH
takes the form

H (x, p, τ) =
1
2
p2 + U (x, τ) , (6)

where the “potential energy”U is

U =
1
2
x2 − I

∞∫
x

dx′S (x′ − x)

∞∫
−∞

dpF (x′, p, τ), (7)
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with

I =
Nre

T0γωs0σzσE
, (8)

andS (x) =
∫ xσs

0 dzw (z). Note that the functionS is a
dimensionless function of its argument.

Let us perform a canonical transform fromx andp to ac-
tion and angle variablesJ andθ, of the equilibrium Hamil-
tonianH0, and denote bỹV the deviation of the potential
energy from the equilibrium,̃V = U − U0. SinceH0 de-
pends onJ only, the total HamiltonianH (θ, J, t) takes the
form

H (θ, J, τ) = H0 (J) + Ṽ (θ, J, τ) . (9)

The Vlasov equation forF in terms of action-angle vari-
ables is

∂F

∂τ
+ ωs

∂F

∂θ
+
∂Ṽ

∂J

∂F

∂θ
− ∂Ṽ

∂θ

∂F

∂J
= R, (10)

whereωs = ωs (J) is the frequency of synchrotron oscilla-
tions with the wake taken into account,ωs (J) = dH0/dJ .

3 LINEAR THEORY

Suppose thatF0 (J) is the equilibrium distribution func-
tion, andδF (J, θ, τ) = F−F0 (J) is its deviation from the
equilibrium. In linear theory,δF = f1 (J, θ) e−iωτ + c.c.,
where the notation “ c.c.” denotes a complex conjugate to
the first term. The perturbation of the potentialṼ is Ṽ =
Vωe

−iωτ + c.c.. SinceVω is a periodic function ofθ, we
can expand it in Fourier series,Vω =

∑∞
n=−∞ vn (J) einθ.

For simplicity, we will neglect here the effect of the syn-
chrotron damping in the linear theory by dropping theR-
term in Eq. (10). This greatly simplifies the linear analysis
and is usually assumed in the literature. However, it can be
shown that the effect of the synchrotron damping is crucial
for the nonlinear stage of the instability and will later be
included in the derivation of the nonlinear equations.

Substituting the expressions forδF andṼ into Eq. (10)
gives in linear approximation

−iωf1 + ωs
∂f1
∂θ

= F ′
0

∞∑
n=−∞

invn (J) einθ, (11)

whereF ′
0 = ∂F0/∂J . A solution to Eq. (11) is

f1 = −F ′
0

∞∑
n=−∞

nvn (J)
ω − nωs

einθ. (12)

Now, linearizing Eq. (7) and substituting Eq. (12) into it
yields an infinite set of integral equations that determines
eigenfrequencies and eigenfunctions for the collective os-
cillations of the bunch:

vn (J) = I
∑
m

m

∞∫
0

dJ1Knm (J, J1)
F ′

0 (J1) vm (J1)
ω −mωs (J1)

,

(13)

with the kernel given by

Knm =
1
2π

2π∫
0

2π∫
0

dθdθ1e
i(mθ1−nθ)K (J, θ, J1, θ1) , (14)

andK (J, J1, θ, θ1) = S (x (J, θ) − x (J1, θ1)). The inte-
gral on the right hand side of Eq. (13) defines an analytical
function in the upper half plane of the complex variableω;
for Imω ≤ 0 the integral must be analytically continued
into the lower half plane.

4 NONLINEAR THEORY

Let us assume that the instability has a threshold corre-
sponding to a critical value of the parameterI = Ic with the
frequency at the thresholdω = ωc (Imωc = 0). We will
be interested in the analysis of the nonlinear phase of the
instability in the vicinity of the threshold when the growth
rate of the instability,Γ, is much smaller thanωc, Γ � ωc.
It turns out that in this case one can separate a “slow” time
scale on which the amplitude evolves from “fast” oscilla-
tions with the frequencyωc and derive nonlinear equations
for the evolution of the amplitude of the instability by av-
eraging overωc [7].

First, we rewrite the result of the previous section in a
concise form,

L̂ (ω, I) Vω = 0, (15)

where the linear operator̂L represents a set of integral
equations (13). A particular form of the operatorL̂ is not
essential for the analysis. The frequency of the oscillations
ωc at the threshold and the corresponding eigenfunction
Vωc ≡ uc are determined by the equation

L̂ (ωc, Ic)uc = 0. (16)

We now consider a situation whenI slightly exceeds the
threshold,I = Ic + ∆I, with ∆I � Ic, and denote the
differenceω−ωc = Ω+ iΓ (ω is now the frequency of the
unstable mode above the threshold), whereΓ is the growth
rate, andΩ is the coherent frequency shift. Following a
general prescription of nonlinear theory of oscillations [8],
we will assume the following type of solution (in time rep-
resentation) for̃V ,

Ṽ =
[
A (τ) uce

−iωcτ + c.c.
]
+ ∆V (J, θ, τ) , (17)

where|Auc| � |∆V |. The first term in Eq. (17) describes
oscillations with the eigenfunctionuc, frequencyωc and
varying amplitudeA (τ), and the second term is a correc-
tion due to the deviation of the exact eigenfunction fromuc.
It is important to emphasize here thatA (τ) is supposed to
be a slow function of time,|∂ lnA/∂τ | � ωc.

Solving the nonlinear Vlasov equation iteratively, after
cumbersome calculations that we omit because of the lack
of space (see details in Ref. [7]), one can obtain an equation
for the complex amplitudeA. This equation contains con-
tributions from resonances characterized by different val-
ues of the actionJn, wherenωs (Jn) = ωc with n being
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and integer. In a typical situation, only one value ofn con-
tributes to the result due to a small synchrotron frequency
spread within the bunch. Introducing scaled parameters:
amplitudea, growth rateg, and timeξ according to equa-
tions a = A

√
ρ/B

5/6
n eiΩτ , g = Γ/B1/3

n , ξ = B
1/3
n τ ,

whereBn = n2 (ω′
s)

2
D (Jn), andρ andφ are the abso-

lute value and the phase of a matrix element of the kernel
(see [7] for details) the equation for the amplitude takes the
form
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Figure 1: Plots of the absolute value of the amplitude,|a|,
versus timeξ for φ = 0. (a) –g = 0.1, (b) –g = 0.3, (c) –
g = 0.4, (d) –g = 0.48, (e) –g = 0.5, (f) – g = 0.6, (g) –
g = 0.7, (h) –g = 0.8.

∂a

∂ξ
− ga = −eiφ

ξ/2∫
0

dζa (ξ − ζ)ζ2

×
ξ−2ζ∫
0

dσa (ξ − ζ − σ) a∗ (ξ − 2ζ − σ)e−ζ2(σ+ 2
3 ζ). (18)

The parameterg here plays a role of dimensionless growth
rate of the instability that is measured in time units related
to the synchrotron damping rate. Note that Eq. (18) con-
tains only two real parameters,g andφ.

5 ANALYSIS

Equation (18) admits an asymptotic solution in the form
of a = const × exp (iλξ) that corresponds to oscilla-
tions with a constant amplitude and a coherent frequency
shift λ. This solution is valid in the limitξ → ∞ and
exists only if |φ| < π/2. It is given by the following
formula that can be easily verified by direct substitution,

a = 181/6g1/2
(
Γ

(
1
3

)
cosφ

)−1/2
e−iξ tan φ, whereΓ

(
1
3

)
stands for the gamma function. According to this solution,
the steady state amplitude|a| increases in proportion to the
square root of the dimensionless growth rate,g1/2. It turns
out however, that this solution is only stable for relatively
small values of the parameterg.

We have solved Eq. (18) numerically for several sets of
g andφ. The results forφ = 0 are presented in Fig. 1.

Even visual comparison of the instability signal from
Ref. [1] shows a clear resemblance to some of our curves.
In one case (Fig. 5 of Ref. [1]), after injection in the ring,
the amplitude of signal from spectrum analyzer tuned to a
sideband frequency began to grow monotonically and after
some time of the order of synchrotron damping time satu-
rated at approximately constant level. This situation is very
similar to our Fig. 1a. In another case (Fig. 4 of Ref.
[1]), oscillations with decreasing amplitude were observed,
which can be identified with Fig. 1b or 1c. In later mea-
surements [9], amplitude oscillations with approximately
constant modulation were measured. This situation re-
minds our Fig. 1e.

Further work is planned to make a more definite compar-
ison of the theory with the experiment.
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