Ion Implantation for Semiconductor Devices: The Largest Use of Industrial Accelerators

Susan Felch, Michael Current, and Mitchell Taylor

Outline

- Ion implantation business
- Semiconductor applications
- Ion implanter designs and accelerators
 - High-current implanters
 - Medium-current implanters
 - High-energy implanters
 - Specialty implanters
- Summary

Yearly Unit Sales of Ion Implanters

Major Implantation Tool Makers: 1960-2013

A long history of new ventures, failures & mergers.

Other companies: mostly R&D and solar machines:

High Voltage Europa, Ulvac, National Electrostatics, Ion Beam Services, Intevac, Goldstone.

Major Implant Systems: 1970–2013 Many new designs & capabilities.

"Classic" Planar-CMOS (on bulk-Si)

[M.I. Current, L.A. Larson, "In-line Characterization of Doping Technologies for ULSI: Requirements and Capabilities", in Characterization and Metrology for ULSI Technology, eds. D.G. Seiler et al., AIP Proc. 449, American Institute of Physics (1998).pp 143-151]

Dose-Energy Phase Space for CMOS

Implanter Types Reflect Dose/Energy Groups

Three-Dimensional (3D) Transistors

- FinFETs or tri-gate transistors
 - In production for Intel's 22 nm technology
 - Scheduled for foundry production at Global Foundries, TSMC, UMC, etc.

Intel 22 nm FinFET: Images by Chipworks

Potential Implants for Bulk FinFET Doping and Materials Modification

Implanter Requirements

- Dose uniformity: < 0.5 %, one sigma
- Dose repeatability: < 0.5 %, one sigma, wafer-to-wafer, day-to-day
- Energy Accuracy: <1.0%
 - <0.1% energy contamination
- Angular Accuracy: <1°
 - <0.1° for wells
- Particles
 - Frontside: \leq 5 @ 0.042 µm
 - Backside: ≤ 500 @ 0.06 µm
- Contamination
 - Heavy / alkali metals: total \leq 1E9 cm⁻²
 - AI: ≤ 1E10 cm⁻²
- Wafer temperature: $\leq 60C$
- Throughput: >200 wafers/hour (for low doses)
- Ion Source Lifetime: >100-500 hours
- Tune Time (ion or energy change): <3 minutes
- Mean time before failure (MTBF): >200 hours
- Availability ("uptime"): >95 %

Beamline Implanter Design

Ion Source (Plasma)

Source Materials Solids (vapors) As, P, Sb₂O₃ Gases BF_3 , $B_{10}H_{14}$, AsH₃, PH₃ $InCl_3$, $In_2O_3+H_2$, SiF₄, GeF₄ H₂, O₂, He, Ar

Axcelis GSD/200E² Enhanced Extended Life Source (ELS)

High-Current Implanters

Spinning Wheels to Hold Wafers

AMAT xR80

Broken Poly Gates: Particles and Spinning Wheels

Varian VIISta HCP (circa 2000AD)

Energy Range	200eV– 60keV
Dose Range	1E13 - 5E16
Max Throughput	350 WPH

Key Features

- Single Wafer
- Common VIISta end station & control system
- Static ribbon beam
- 2 stage deceleration
- 2nd Magnet
- Closed loop dose/angle control
- Simple 1D mechanical scan

• Inclined beamline; final energy & neutrals filter before wafer

Axcelis Optima HD

AIBT iPulsar

- Sub-keV Ultra Low Energy Implant
 - One Deceleration Stage with final Energy Filter
 - Off-energy neutrals are removed along the decel energy filter path - only ions traveling at the correct low velocity can make it through filter
 - Enables high purity, low energy beam with high beam currents (high decel ratio)

Medium-Current Implanters

Varian VIISta 900XP

Energy Range	2keV-900keV
Dose Range	1E11– 1E16/cm2
Max Throughput	500 WPH

Key Features

- Single Wafer
- Common VIISta end station & control system
- 500 wafer-perhour throughput
- Filter magnet at source
- Closed loop dose/angle control
- Simple 1D mechanical scan

Axcelis Optima MD_{II}: Repeatable Angle Control

- The Optima MD_{II} scans the pencil beam electrostatically and symmetrically on a center axis
 - <u>No</u> magnetic correction or bend tuning needed
 - P-lens parallelizes beam to the central axis, which is normal to the wafer surface

High-Energy Implanters

Axcelis' LINAC (LINear ACcelerator)

Axcelis Purion XE

- Single-wafer implanter
- Unmatched beam purity through triple filtration
- Triply indexed 70° mass analysis magnet
 - Mass filter selects species and charge state
- 2) Patented RF Linear Accelerator (LINAC)
 - Velocity filter selects velocity (mass and energy)
- 3) 58° Final Energy Magnet
 - Energy filter selects final energy (rejection of off-energy ions and neutrals)

Energy Range	5keV-4.5MeV
Dose Range	1E11– 1E16/cm2
Max Throughput	500 WPH

Varian VIISta 3000XP

Energy Range	5keV–3MeV
Dose Range	5E10– 1E16/cm2
Max Throughput	400 WPH

- Key Features
 - Single Wafer
 - Common VIISta end station, control system & software
 - Tandem HE-DC accelerator
 - Closed loop dose/angle control
 - Simple 1D mechanical scan

Specialty Implanters

MeV Proton Implanters
Plasma Immersion Ion Implanters

- When heated, the ultra-thin silicon wafer (lamina) cleaves from the donor wafer
 - The donor is reused
- Similar technology, with lower energy H+ ions, is used for SOI wafer formation, diverse materials lamination, and 3D CMOS stacking

GT Advanced Technologies (GTAT) Hyperion: MeV H⁺ Implanter for Solar Cells

- Single-ended DC acceleration
 - Commercial high voltage power supplies
 - Alternator provides electrically isolated source of power for its HV power supply
- 0.4–1.2 MeV (5–20 µm thick)
 - 3 generator assemblies, 15 independent HV power supplies

GTAT Hyperion MeV Protons

SiGen PolyMax: MeV H+ Implanter for Solar Cells

- 4 MeV maximum energy (150 µm Si depth)
- Pipe-lined, in-line system
- Enclosure (vault room) constructed of standard concrete

Plasma Immersion Ion Implantation: High-Dose Doping & Materials Modification

- Negative voltage repels electrons and creates plasma sheath of positive ions
- Electric field accelerates positive ions and implants them into wafer
- Voltage determines implant depth
 - "Accelerator size" is sheath thickness
 - 100 V 10 kV
- Simultaneous implantation of whole wafer
- Many doping and materials modification applications
 - Very high doses (> 10¹⁶ cm⁻²)
 - 2 applications used in production of almost all DRAM devices today

Summary: Ion Implantation Technology

- Technology built on >40 years of experience
 - Accelerators are key component of implant tools
- Doses span a range of 10⁸
- Energies span a range of 10⁴
- Implanter designs have evolved over time and will continue to evolve
 - >40 implant steps per device today for doping and materials modification applications
 - New applications bring new requirements
 - CMOS scaling brings more demanding requirements