

New Method for Point-Charge Wakefield Calculation

Boris Podobedov boris@bnl.gov

NA-PAC'13, Pasadena, CA Oct. 2, 2013

References and Outline

- Motivation
- New Method of Short-Bunch Wake Calculations
 - Singular wake models
 - Basic idea of the method (for step-out)
 - Parameter λ_{g}
 - How to apply step-by-step
- Illustrative Examples
 - Simple cavity
 - NSLS-II Harmonic Cavity
 - 3D collimator
- Summary

collaboration with G. Stupakov (SLAC)

This work is done in

References

BP, GS, PRST-AB 16, 024401 (2013), DOI: 10.1103/PhysRevSTAB.16.024401

Longitudinal wakes for 2D structures

BP, GS, WEODB1, this conference

Extension to transverse wakes

Motivation

- Knowledge of wakefields, incl. geometric ones, is critically important for accelerator beam dynamics.
- Detailed wakefield calculations for realistic vacuum chambers are done with time domain EM solvers, which calculate the fields due to finite length bunches.
- Extremely fine meshes are needed to compute wakes at small distances, where wake <u>singularities</u> dominate => calc's are slow and lots memory is req'd.

We suggest how to calculate short bunch wake-potentials, and even point-charge wakefields, from EM solver results for a long bunch. This saves greatly on calculation speed and provides physics insights.

- Can one get a δ -function impulse response, W^{δ} , using a finite duration Gaussian input, $\sigma(t) \sim \exp(-t^2/2\sigma^2)$?
- Or, equivalently, a frequency response, Z(ω), over infinite freq. range with finite BW excitation?
 - No, if the system is a black-box.
 - Yes, if the system is a gray-box, for example a set of harm. oscillators with (all normal modes) $\omega_n{<}\omega_{\rm max}$

- Can one get a δ -function impulse response, W^{δ} , using a finite duration Gaussian input, $\sigma(t) \sim \exp(-t^2/2\sigma^2)$?
- Or, equivalently, a frequency response, Z(ω), over infinite freq. range with finite BW excitation?
 - No, if the system is a black-box.
 - Yes, if the system is a gray-box, for example a set of harm. oscillators with (all normal modes) $\omega_n{<}\omega_{\rm max}$

- Can one get a δ -function impulse response, W^{δ} , using a finite duration Gaussian input, $\sigma(t) \sim \exp(-t^2/2\sigma^2)$?
- Or, equivalently, a frequency response, Z(ω), over infinite freq. range with finite BW excitation?
 - No, if the system is a black-box.
 - Yes, if the system is a gray-box, for example a set of harm. oscillators with (all normal modes) $\omega_n{<}\omega_{\text{max}}$

- Can one get a δ -function impulse response, W^{δ} , using a finite duration Gaussian input, $\sigma(t) \sim \exp(-t^2/2\sigma^2)$?
- Or, equivalently, a frequency response, Z(ω), over infinite freq. range with finite BW excitation?
 - No, if the system is a black-box.
 - Yes, if the system is a gray-box, for example a set of harm. oscillators with (all normal modes) $\omega_n < \omega_{max}$

We claim that the problem of geometric impedance is similar to "gray box", since ω_{max} , as well as $Z(\omega \rightarrow \infty)$ asymptotic are known. Similarly true in time-domain for point-charge wakes.

Asymptotic Model for Short-Bunch Wakefields of Collimator-like Structures

• For collimator-like structures use the optical model:

$$W_{opt}^{\delta}(z) = k_{opt}\delta(z) \qquad \text{wake-function}$$
$$W_{opt}^{\sigma}(z) = k_{opt}(2\pi)^{-1/2}\sigma^{-1}e^{-\frac{z^2}{2\sigma^2}}$$
wake-potential

$$k_{opt} = -Z_0 c Ln(a / b) / \pi$$

$$W_{opt}^{\delta}(z \to 0) = \infty$$

$$W_{opt}^{\sigma \to 0}(z) = \infty$$

 Turns out this model describes <u>all</u> collimator-like structures, including 3D; A recipe to calculate geometry-dependent k_{opt} exists [see Stupakov, Bane Zagorodnov, PRST-AB 10, 054401 (2007)]

Asymptotic Model for Short-Bunch Wakefields of Cavity-like Structures

• For cavity-like structures we use the diffraction model:

- Wake-potentials for all cavity shapes (tapered or not, deep or shallow, etc.) converge to this model for short enough bunches and distances.
- Model is easily expandable to 3D geometries.

Introducing the Method: Wake of a Step-Out

- Wake-potentials are singular at $\sigma \rightarrow 0$
- Subtracting singular part (optical model) we obtain a well-defined limit (black line) at $\sigma \rightarrow 0$

$$D^{\sigma}(z) = W^{\sigma}(z) - W^{\sigma}_{s}(z)$$
$$D^{\delta}(z) = \lim_{\sigma \to 0} D^{\sigma}(z)$$

- This function is approximated by $D^{\delta}(z) \approx (\alpha + \beta z) H(z)$
- Coefficients α and β can be found by fitting (next VG).
- Thus we reconstruct point-charge wakefield (at short *z*-range)

Boris Podobedov, Oct. 2, 2013

Wake of a Step-Out Con't: fitting for α and β

Point-charge and Gaussian bunch functions are related:

$$D^{\delta}(z) = (\alpha + \beta z)H(z) \qquad D^{\sigma}(z) = \frac{\alpha + \beta z}{2} \left(1 + \operatorname{erf}(\frac{z}{\sqrt{2}\sigma})\right) + \frac{\beta \sigma}{\sqrt{2\pi}} e^{-\frac{z}{2\sigma^2}}$$

- α and β can be found by fitting $D^{\sigma}(z)$ from EM solver for i.e. $|z/\sigma| < 3$.
- Take σ_0 =2 mm and apply the fitting. Then use α and β obtained to reconstruct wakes for other values of σ :

Reconstructed wakes agree well with direct ECHO calculation

 -2^{2}

How to Pick σ_0 in EM solver

- Why did the σ_0 =2 mm fit work well? Because $\sigma_0 << \lambda_g$.
- Parameter λ_g >0 is the first location of the wake singularity (or singularity of its derivatives) closest to z=0.
- $D^{\delta}(z) = (\alpha + \beta z)H(z)$ cannot be extended beyond $z = \lambda_g$ since the wake derivative is singular ("kink").

How to Pick σ_0 in EM solver

- Why did the σ_0 =2 mm fit work well? Because $\sigma_0 << \lambda_g$.
- Parameter $\lambda_g > 0$ is the first location of the wake singularity (or singularity of its derivatives) closest to z=0.
- $D^{\delta}(z) = (\alpha + \beta z)H(z)$ cannot be extended beyond $z = \lambda_g$ since the wake derivative is singular ("kink").

•Run EM solver with $\sigma_0 << \lambda_g$, typically σ_0 / λ_g =0.1-0.15 is O.K.

•Running with shorter bunch gives no new information about the wake!

• λ_g can be found by simple geometry analysis.

- Red ray (spherical wave front) eventually catches up with ALL particles in the bunch, thus affecting the wakefield for all values of z.
- Green ray travels λ_g/c behind and it will never catch up with the front of the bunch, so λ_g emerges in the front portion of the wake.
- For other ratios between r_{\min} , r_{\max} , and g, other combinations may define λ_g , i.e. $\lambda_g = 2g$ for a short cavity or, for a shallow one, $\lambda_g = \sqrt{4(r_{\max} - r_{\min})^2 + g^2} - g$

- Red ray (spherical wave front) eventually catches up with ALL particles in the bunch, thus affecting the wakefield for all values of z.
- Green ray travels $\frac{\lambda_g}{c}$ behind and it will never catch up with the front of the bunch, so $\frac{\lambda_g}{c}$ emerges in the front portion of the wake.
- For other ratios between r_{\min} , r_{\max} , and g, other combinations may define λ_g , i.e. $\lambda_g = 2g$ for a short cavity or, for a shallow one, $\lambda_g = \sqrt{4(r_{\max} - r_{\min})^2 + g^2} - g$ Similarly λ_g one can find for arb. geometry (see PRST-AB paper)

- This is longer for deep cavities with $r_{\text{max}} > 2r_{\text{min}}$.

Green ray does not affect short-range wake for $z < \sqrt{(2r_{\min})^2 + g^2} - g$ Brown ray does not affect short-range wake for $z < \sqrt{4(r_{\max} - r_{\min})^2 + g^2} - g$

- By causality, any cavity with radial boundary, r(s), that coincides with the figure for $r(s) < 2r_{min}$, but otherwise is arbitrarily complex, must have the same short-range wake for $z < \lambda_g$.
- $=>\lambda_g$ is defined by the geometry near r_{\min}

- Green ray does not affect short-range wake for $z < \sqrt{(2r_{\min})^2 + g^2 g}$
- Brown ray does not affect short-range wake for $z < \sqrt{4(r_{max} r_{min})^2 + g^2} g$ This is longer for deep cavities with $r_{\text{max}} > 2r_{\text{min}}$.

- By causality, any cavity with radial boundary, r(s), that coincides with the figure for $r(s) < 2r_{min}$, but otherwise is arbitrarily complex, must have the same short-range wake for $z < \lambda_g$.
- $=>\lambda_{g}$ is defined by the geometry near r_{\min}

- Green ray does not affect short-range wake for $z < \sqrt{(2r_{\min})^2 + g^2 g}$
- Brown ray does not affect short-range wake for $z < \sqrt{4(r_{max} r_{min})^2 + g^2} g$ This is longer for deep cavities with $r_{\text{max}} > 2r_{\text{min}}$.

- By causality, any cavity with radial boundary, r(s), that coincides with the figure for $r(s) < 2r_{min}$, but otherwise is arbitrarily complex, must have the same short-range wake for $z < \lambda_g$.
- $=>\lambda_g$ is defined by the geometry near r_{\min}

- Green ray does not affect short-range wake for $z < \sqrt{(2r_{\min})^2 + g^2 g}$
- Brown ray does not affect short-range wake for $z < \sqrt{4(r_{max} r_{min})^2 + g^2} g$ This is longer for deep cavities with $r_{\text{max}} > 2r_{\text{min}}$.

- By causality, any cavity with radial boundary, r(s), that coincides with the figure for $r(s) < 2r_{min}$, but otherwise is arbitrarily complex, must have the same short-range wake for $z < \lambda_g$.
- $=>\lambda_g$ is defined by the geometry near r_{\min}

- Green ray does not affect short-range wake for $z < \sqrt{(2r_{\min})^2 + g^2 g}$
- Brown ray does not affect short-range wake for $z < \sqrt{4(r_{max} r_{min})^2 + g^2} g$ This is longer for deep cavities with $r_{\text{max}} > 2r_{\text{min}}$.

- By causality, any cavity with radial boundary, r(s), that coincides with the figure for $r(s) < 2r_{min}$, but otherwise is arbitrarily complex, must have the same short-range wake for $z < \lambda_g$.
- $=>\lambda_g$ is defined by the geometry near r_{\min}

How It All Works Together

- **1.** Determine analytical singular wake model:
- **2.** Determine λ_g
- 3. Calculate the wake-potential with your favourite EM solver for $\sigma_0 << \lambda_g$:
- **4.** Subtract the singular wake:
- 5. Fit the remainder, $D^{\sigma_0}(z)$, with the function: (fit range $|z/\sigma_0| < 3$ works well)
- **6.** Short-bunch wake (for arb. $\sigma \leq \sigma_0$) is then:

 $W^{\sigma}(z \le 3\sigma_0) = \frac{\alpha + \beta z}{2} \left(1 + \operatorname{erf}(\frac{z}{\sqrt{2}\sigma}) \right) + \frac{\beta \sigma}{\sqrt{2\pi}} e^{-\frac{z^2}{2\sigma^2}} + W_s^{\sigma}(z)$

 $W^{\sigma_0}_{\rm FCHO}(z)$

 $W_{s}^{\delta}(z) \& W_{s}^{\sigma}(z)$

$$D^{\sigma_0}(z) = W^{\sigma_0}_{ECHO}(z) - W^{\sigma_0}_s(z)$$
$$\frac{\alpha + \beta z}{2} \left(1 + \operatorname{erf}(\frac{z}{\sqrt{2}\sigma_0}) \right) + \frac{\beta \sigma_0}{\sqrt{2\pi}} e^{-\frac{z^2}{2\sigma_0^2}}$$

$$W^{\sigma}(z > 3\sigma_0) = W^{\sigma_0}_{ECHO}(z)$$

7. For point-charge:

$$W^{\delta}(z \leq 3\sigma_0) = (\alpha + \beta z)H(z) + W^{\delta}_s(z) \qquad \qquad W^{\delta}(z > 3\sigma_0) = W^{\sigma_0}_{ECHO}(z)$$

How It All Works Together

- **1.** Determine analytical singular wake model:
- **2.** Determine λ_g
- 3. Calculate the wake-potential with your favourite EM solver for $\sigma_0 << \lambda_g$:
- **4.** Subtract the singular wake:
- 5. Fit the remainder, $D^{\sigma_0}(z)$, with the function: (fit range $|z/\sigma_0| < 3$ works well)
- **6.** Short-bunch wake (for arb. $\sigma \leq \sigma_0$) is then:

 $W^{\sigma}(z \le 3\sigma_0) = \frac{\alpha + \beta z}{2} \left(1 + \operatorname{erf}(\frac{z}{\sqrt{2}\sigma}) \right) + \frac{\beta \sigma}{\sqrt{2\pi}} e^{-\frac{z^2}{2\sigma^2}} + W_s^{\sigma}(z)$

 $W_s^{\delta}(z)$ & $W_s^{\sigma}(z)$

$$W^{\sigma_0}_{ECHO}(z)$$

$$D^{\sigma_0}(z) = W^{\sigma_0}_{ECHO}(z) - W^{\sigma_0}_s(z)$$
$$\frac{\alpha + \beta z}{2} \left(1 + \operatorname{erf}(\frac{z}{\sqrt{2}\sigma_0}) \right) + \frac{\beta \sigma_0}{\sqrt{2\pi}} e^{-\frac{z^2}{2\sigma_0^2}}$$

$$W^{\sigma}(z > 3\sigma_0) = W^{\sigma_0}_{ECHO}(z)$$

7. For point-charge:

$$W^{\delta}(z \le 3\sigma_0) = (\alpha + \beta z)H(z) + W^{\delta}_s(z) \qquad \qquad W^{\delta}(z > 3\sigma_0) = W^{\sigma_0}_{ECHO}(z)$$

Transverse is very similar
Boris Podobedov. Oct 2, 2013

The Method Was Applied to Many Geometries

The Method Was Applied to Many Geometries

It worked well for all of them

Boris Podobedov, Oct. 2, 2013

Simple Cavity Example

- $r_{min}=1 \text{ cm}$ $r_{max}=5 \text{ cm}$ g=1 cm
- Diffraction-model behaviour near z=0

• Pick
$$\sigma_0 = 200 \mu m \ll \lambda_g$$

$$D^{\sigma_0}(z) = W^{\sigma_0}_{ECHO}(z) - W^{\sigma_0}_d(z)$$

• Short-bunch wake reconstructed well.

$$\lambda_g = \sqrt{(2r_{\min})^2 + g^2} - g = 1.24 \text{ cm}$$

Boris Podobedov, Oct. 2, 2013

0.2

Transverse Wake for the Same Cavity

- The same algorithm works well in the transverse (except the transverse diffraction model is non-singular).
- Reconstructed wakes from σ_0 = 2 mm agree perfectly with direct ECHO calculations

NSLS-II Landau Cavity

- 1.5 GHz dual cell cavity, r_{side_pipe} = 6 cm
- Final results for the short-range wakes:

To find $10\mu m$ bunch wake

<u>Brute force:</u> ~480 hours of Intel(R) Xeon(R) 5570@2.93 GHz CPU to z_{max} =1 cm.

<u>Our method:</u> uses only σ =50µm calc's, saves a factor of 5³ on CPU time and 5² on memory. Gives a model of the point-charge wake as a bonus.

3D Example

Wakes by I. Zagorodnov, 3D ECHO + CST mesher

- Observe λ_g , where expected
- Expected behavior near the origin; can easily fit point-charge wake $\alpha \& \beta$
- Same applies for logitudinal (+ optical model), and for quadrupolar wakes Boris Podobedov, Oct. 2, 2013

3D Example

Wakes by I. Zagorodnov, 3D ECHO + CST mesher

- Observe λ_g , where expected
- Expected behavior near the origin; can easily fit point-charge wake $\alpha \& \beta$
- Same applies for logitudinal (+ optical model), and for quadrupolar wakes Boris Podobedov, Oct. 2, 2013

3D Example

Wakes by I. Zagorodnov, 3D ECHO + CST mesher

- Observe λ_g , where expected
- Expected behavior near the origin; can easily fit point-charge wake $\alpha \& \beta$
- Same applies for logitudinal (+ optical model), and for quadrupolar wakes Boris Podobedov, Oct. 2, 2013

Summary

- Wakefield calculation is important task for modern accelerators. For large and smooth accelerator structures and short bunches, direct EM solver calc's can be extremely time-consuming.
- We described a new method to accurately obtain wakefields of short bunches, including point-charge, by adding a (processed) long-bunch result from an EM solver and, if applicable, a singular analytical wake model.
- We showed that this method often provides great savings in computing time required to calculate wake-potentials due to very short bunches.
- The method resolves an important practical question, as to how short of a bunch one needs to use in an EM solver, so that shortening this bunch further would not result in any new information about the wake.
- In the future this work will be generalized to 3D geometries.

Summary

- Wakefield calculation is important task for modern accelerators. For large and smooth accelerator structures and short bunches, direct EM solver calc's can be extremely time-consuming.
- We described a new method to accurately obtain wakefields of short bunches, including point-charge, by adding a (processed) long-bunch result from an EM solver and, if applicable, a singular analytical wake model.
- We showed that this method often provides great savings in computing time required to calculate wake-potentials due to very short bunches.
- The method resolves an important practical question, as to how short of a bunch one needs to use in an EM solver, so that shortening this bunch further would not result in any new information about the wake.
- In the future this work will be generalized to 3D geometries.

