

Development of THz TDS system on the basis of the S-band compact electron linac

Ryunosuke Kuroda

Senior Researcher,

National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan (Visiting lecturer, Waseda University, Tokyo, Japan)

Colleagues of THz research

Y.Taira, M. Tanaka, H. Toyokawa, K. Yamada (AIST)

M. Kumaki¹, M. Tachibana¹, K.Sakaue¹, K. Kan², M. Yoshida³, H. Tomizawa⁴

¹ RISE, Waseda University, Japan,

² ISIR, Osaka University, Japan

³ KEK, Japan

⁴ RIKEN, SPring-8 Center, Japan

Outline

- Introduction
 - Instruction of THz region
 - Methods of THz generation
 - Coherent THz radiation (CSR, CTR in our case)
 - S-band compact electron linac and THz beam lines at AIST
- Measurement of THz-CTR characteristics

THz-CTR Profile, Polarization, Frequency-range measurements with THz real-time camera, Polarizer and BPFs

- Present status of THz-CTR Time-domain spectroscopy (TDS)
 Setup of THz-CTR-TDS, Preliminary experiment results of THz-TDS with samples
- Summary

In collaborating with Central Custom Laboratory (Japan Custom) of Ministry of Finance Japan

NA-PAC 2013@Pasadena, 2nd October, 2013

THz region :(0.1 ~ 10 THz; 30µm ~ 3mm)

Critical frequency ω_c

Coherent THz radiation

Coherent radiation methods

To generate the coherent THz radiation, the electron bunch should be compressed to less than 0.5 ps.

NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY (AIST)

Outline

- Introduction
 - Instruction of THz
 - Methods of THz generation
 - Coherent radiation (CSR, CTR in our case)
 - S-band compact linac and THz beam lines summary at AIST
- Measurement of THz-CTR characteristics

THz-CTR Profile, Polarization, Frequency-range measurements with THz real-time camera, Polarizer and BPFs

- Present status of THz-CTR Time-domain spectroscopy (TDS)
 Setup of THz-CTR-TDS, Preliminary experiment results of THz-TDS with samples
- Summary

Backward

Measurement of THz-CTR characteristics

THz-CTR Profile measurement with THz Camera (made by NEC corp.)

Ultra-short electron beam

Table Specifications of product of handy THz camera

Table : opecifications of product of handy fill calleta		
	Array sensor	Uncooled microbolometer FPA
AI AI ₂ O ₃ Forward THz-CTR	Array format	320 (H) x 240 (V)
	Pixel pitch	23.5 µm
	Field of view	ca. 15° (H) x 11° (V)
	Output	USB
	Weight	ca. 600g (excl. lens and filter)
	Size	72 mm (W) x 62 mm (H) x 108 mm (D) (D 165 mm with lens)
	,	

View area :7.5mm × 5.6mm Frame rate: 30Hz

Rotating Polarizer, Band Pass Filter(BPF) etc

THz-CTR Profile measurement

THz-CTR Profile measurement

THz-CTR Polarization measurement Ultra-short electron beam with THz Camera (made by NEC corp.) Linearly Polarizer

THz-CTR Profile measurement

THz-CTR Profile measurement

THz-CTR Profile measurement

THz-CTR Profile measurement with BPF

Outline

- Introduction
 - Instruction of THz region
 - Methods of THz generation
 - Coherent THz radiation (CSR, CTR in our case)
 - S-band compact linac and THz beam lines summary at AIST
- Measurement of THz-CTR characteristics

THz-CTR Profile, Polarization, Frequency-range measurements with THz real-time camera, Polarizer and BPFs

Present status of THz-CTR Time-domain spectroscopy (TDS)
 Setup of THz-CTR-TDS, Preliminary experiment results of THz-TDS with samples

• Summary

In collaborating with Central Custom Laboratory (Japan Custom) of Ministry of Finance Japan

THz-CTR Time Domain Spectroscopy(TDS) with EO sampling method

THz time-domain spectroscopy (THz-TDS) has recently emerged as a useful probe for the investigation of illegal materials such as explosives and drugs.

THz-TDS Result with Polyethylene(PE) sample

To demonstrate the THz-TDS system,

the refractive index measurement has been done using the well-known sample (PE) It is well-known that PE has about 1.5 refractive index from optical to THz region.

THz-TDS Result with Polyethylene(PE) sample

To demonstrate the THz-TDS system,

the refractive index measurement has been done using the well-known sample (PE) It is well-known that PE has about 1.5 refractive index from optical to THz region.

THz-TDS Result with Polyethylene(PE) sample

To demonstrate the THz-TDS system,

the refractive index measurement has been done using the well-known sample (PE) It is well-known that PE has about 1.5 refractive index from optical to THz region.

NATIONAL INSTITUTE OF ADVANCED INDUSTRIAL SCIENCE AND TECHNOLOGY (AIST)

THz-TDS Result with drug sample (MPA)

THz-TDS Result with drug sample (MPA)

THz-TDS Result with drug sample (MPA)

One of the solutions is the single-shot measurement

with the chirped pulse laser (spectral decoding).

Now, we are preparing the single-shot scheme.

Frequency [In2]

<u>Summary</u>

- 1. High peak power THz source has been developed with CSR, CTR techniques on the basis of the S-band compact electron linac at AIST.
- THz-CTR characteristics (Profiles, Polarization, Frequency range) have been measured with the real-time THz camera, Polarizer and BPFs THz frequency range: 0.1 – 5.0 THz
- 3. THz-CTR Time-domain spectroscopy (TDS) has been demonstrated in freq. range between 0.1 2 THz. The refractive index (PE) and the absorption (MPA) measurements have also successfully performed in atmosphere.

In near future, single-shot measurement (Spectral decoding) will be performed.

In-situ Security Inspection (Investigation of explosives and illegal drugs)

Colleagues of THz research

Y.Taira, M. Tanaka, H. Toyokawa, K. Yamada (AIST)
M. Kumaki¹, M. Tachibana¹, K.Sakaue¹, K. Kan², M. Yoshida³, H. Tomizawa⁴
¹ *RISE, Waseda University, Japan*,
² *ISIR, Osaka University, Japan*³ *KEK, Japan*⁴ *RIKEN, SPring-8 Center, Japan*

<u>Summary</u>

- 1. High peak power THz source has been developed with CSR, CTR techniques on the basis of the S-band compact electron linac at AIST.
- THz-CTR characteristics (Profiles, Polarization, Frequency range) have been measured with the real-time THz camera, Polarizer and BPFs THz frequency range: 0.1 – 5.0 THz
- 3. THz-CTR Time-domain spectroscopy (TDS) has been demonstrated in freq. range between 0.1 2 THz. The refractive index (PE) and the absorption (MPA) measurements have also successfully performed in atmosphere.

REFERENCES

Methamphetamine

Methoxyphenamine

