

Free Electron Lasers in the Soft X-ray Regime

John Corlett LBNL

Soft X-ray science: understand *function* of materials

- Where are the electrons? What are they doing? Why? How?
- Can they be controlled and manipulated?
- Understanding Chemical Reactivity
 - charge transfer, catalysis, photosynthesis (natural and artificial)
- Understanding Correlated Materials what will follow the silicon age?
 - charge correlation, nanoscale organization, charge/spin/lattice coupling
 - superconductivity, colossal magnetoresistance, exotic properties
- Imaging structure ⇒ imaging "function" in biological systems
 - structure + dynamics + function
 - identify conformational states -pathways connecting conformational states
- Soft X-ray probes and pumps for Imaging, structure determination, and spectroscopy
 - Accessing K- and L-edges of the earth-abundant elements
 - Diffraction/scattering in the few to several keV photon energy range

Key soft X-ray FEL performance parameters

- Spatial (transverse) coherence
 - Requirements set by real-space imaging, diffractive imaging, and photon-correlation spectroscopy
- Temporal (longitudinal) coherence
 - Fourier-transform-limited pulses trade-off time and energy resolution
 - ~100 fs pulses with ~10 meV bandwidths to sub-femtosecond pulses with ~10 eV bandwidths
- Synchronization and integration with conventional pulsed laser sources
- Modest to high peak flux and brightness
- High repetition rate with regularly spaced pulses
- High average flux and brightness
 - High repetition rates (100 kHz or greater)
- Tunability throughout the transition-metal L-edges and polarization control
- Two-color capability for non-linear spectroscopies and X-ray pump/X-ray probe
- High degree of amplitude, wavelength, and position stability
- Multiple simultaneous users

Worldwide soft X-ray FEL activities

- Existing soft X-ray FEL user facilities and their upgrade/expansion projects
 FLASH + FLASH-II
 - LCLS + LCLS-II
 - FERMI@elettra + FEL2
 - SACLA + upgrade projects
- Under construction and planned user facility projects
 - European XFEL
 - SwissFEL
 - PAL-XFEL
- Other facility proposals
 - NGLS, SXFEL, IRIDE, WIFEL ...
- Many FEL R&D projects and facilities
 - APEX, ATF, CLARA, JLAB, LUNEX-5, MAX-IV, NLCTA, SCSS, SDL, SDUV FEL, SPARC, WiFEL,

Overview of this talk

- Existing soft X-ray FEL user facilities and their upgrade/expansion projects
 FLASH + FLASH-II
 - LCLS + LCLS-II
 - FERMI@elettra + FEL2
 - SACLA + upgrade projects
- Under construction and planned user facility projects
 - European XFEL
 - SwissFEL
 - PAL-XFEL
- Other facility proposals
 - NGLS, SXFEL, IRIDE, WIFEL ...
- Many FEL R&D projects and facilities
 - APEX, ATF, CLARA, JLAB, LUNEX-5, MAX-IV, NLCTA, SCSS, SDL, SDUV FEL, SPARC, WiFEL,

FLASH II Project

- Second FEL undulator line with variable gap undulators in a separate tunnel
- Second photocathode laser
- Fast kicker to distribute beam within an RF pulse
- Second experimental hall for photon beamlines and experiments
- Implementation of seeding schemes for improved radiation properties
- Under construction; first beam expected early 2014

FLASH-II construction, May 2013

Parameters FLASH-II beamline

Electron beam		Undulator	
Beam Energy	0.5 – 1.25 GeV	Period	31.4 mm
Emittance (norm.)	1 – 3 mm mrad	Segment Length	2.5 m
Energy Spread	0.5 MeV	Segments	12
Peak Current	2.5 kA Gap		Variable
Bunch charge	0.02 – 1 nC	Focusing	FODO
Bunch spacing	1 – 25 µs		
Repetition rate	10 Hz	45 - 40 -	0.7 GeV 1.0 GeV
		Ê ³⁵	1.2 GeV
Eporav	Wayolongth	Ē 30 - 🔪	

Energy	Wavelength	
0.7 GeV	10 – 40 nm	
1.0 GeV	6 – 20 nm	
1.25 GeV	4 – 13.5 nm	

Seeding plans

Jorn Bodewadt and Christoph Lechner

- FLASH-I
 - HGHG (single stage and cascaded seeding)
 - EEHG

- FLASH-II
 - UV seed
 - Initial 10Hz burst mode with an intra-burst repetition rate of 100 kHz
 - Upgrade to 1MHz
 - Hardware for FLASH2 seeding installed by the end of 2014

Beamline switching (FLASH-I and FLASH-II) Siegfried Schreiber

- Flexibility in
 - Intra-train repetition rate
 - Number of pulses per train
 - Longitudinal pulse shape
 - Single pulse energy
- For both(!) user experiments
- **Basics tested successfully**

FI ASH

in Hamburg

12

FERMI at Sincrotrone Trieste

FERMI at Sincrotrone Trieste

Tunnel +

Injector

Extension

- FERMI@Elettra FEL: 100 4 nm HGHG World's first seeded X-FEL user facility Two seperate FEL amplifiers driven by single S-band linac
- High peak power 0.3 GW range (~100 µJ per pulse)
- Short temporal structure sub-ps to 10 fs time scale
- **Tunable wavelength APPLE II-type undulators**
- Variable polarization horizontal/circular/vertical
- Longitudinal and transverse coherence from seeded FEL cascade

FERMI layout

FERMI Commissioning Team

FERMI FEL status

- FEL-1: Single stage cascaded FEL, full specifications achieved in 2012, now dedicated to user experiments
 - Continuously tuneable wavelength 20-65 nm (up to 100nm possible with specific machine setup)
 - Bandwidth (best) 5x10⁻⁴ @ 32 nm
 - Energy per pulse 30-100 uJ (depending on wavelength setting up to a factor 2-3 more relaxing the spectral purity requirements)
- FEL-2: 2-stage, fresh bunch, cascade FEL, in commissioning
 - October 2012 commissioning @ 1.0 GeV, ~50 uJ @10.8 nm
 - Extended wavelength range down to 8 nm in March 2013 (@1.23 GeV) commissioning
 - Down to 5 nm in June 2013 (@1.4 GeV)
 - Coherent emission at 3 nm September 2013

The Fresh Bunch Injection Technique

Two HGHG FEL stages (each equivalent to FEL-1)

- The first stage is seeded in the UV by aTi:Sa laser, 3rd harmonic
 - Radiates at ~4–6 harmonic
- The second stage is seeded by the first stage FEL
 - Radiates at a further harmonic
- The two FELs operate with the same electron beam

FEL-2 First commissioning at 10.8 nm*

Narrow linewidth, single mode spectrum

Gaussian like transverse mode

* E. Allaria et al. "Two Stage, Seeded Soft X-Ray Free-Electron Laser", submitted to Nature Photonics 18

Coherent emission at shorter wavelengths

FERMI Commissioning Team

19

rms bandwidth ~2x10⁻⁴

- Coherent emission with FEL-2 has been obtained down to about 3nm
- Although very weak, single shot spectra have beam measured up to 4 nm and the good ones show narrow line (10⁻⁴)
- Real FEL gain is at the moment limited to about 4 nm due to the electron beam energy limit
- Larger energy per pulse would be accessible with brighter electron beam (higher peak current)

- Uses much existing SLAC infrastructure to house the FEL
- NEW high brightness high rep-rate injector
- Two sources: NEW high rate SCRF linac and 120 Hz NC LCLS-I linac
- NEW undulators always operate simultaneously in any mode

Undulator	SC Linac (up to 100kHz)	Cu Linac (up to 120Hz)
North	0.25-1.2 keV	
South	1.0-5.0 keV	Up to 18 keV Higher peak power pulses

Preliminary schedule completes project in 2020

LCLS-II preliminary operating parameters

Tor Raubenheimer

Preliminary LCLS-II Summary Parameters		v0.7	8/30/13
	North Side Source	South Side	e Source
Running mode	SC Linac	SC Linac	Cu Linac
FEL mode	Self-seeded	Self-seeded	Self-seeded
Repetition rate	up to 1 MHz*	up to 1 MHz*	120 Hz
Electron Energy	4 GeV	4 GeV	14 GeV
Undulator period	~40 mm	~26 mm	~26 mm
Photon energy	0.25-1.2 keV	1-5 keV	1-20 keV
Max Photon pulse energy (mJ) (full charge, long pulse)	up to 2 mJ*	up to 2 mJ*	up to10 mJ
Peak Spectral Brightness (10 fs pulse) (low charge, 10pC)	3.9x10 ³⁰ **	12x10 ³⁰ **	247x10 ³⁰ **
Peak Spectral Brightness (100fs pulse) (full charge, 100pC)	3.0x10 ³⁰ **	6.9x10 ³⁰ **	121x10 ³⁰ **
* Limited by beam power on optics			
**N photons/(s*mm^2*mrad^2*0.1% bandwidth)			

LCLS-II X-ray pulse energy at High Rate

Tor Raubenheimer

	NLS	NGLS	LCLS-II
Beam energy [GeV]	2.25	2.4	4
Bunch charge [pC]	200	300	100
Emittance [mm-mrad]	0.3	0.6	0.43
Energy spread [keV]	150	150 keV	300 keV
Peak current [kA]	0.97	0.5	1
Useful bunch fraction [%]	40	50	50

- APEX high rep-rate high-brightness injector
- ILC-like 1.3 GHz linac, modifications to allow CW operation
- Initial 2 FELs
- Upgradeable (switchyard) to drive additional FELs

SACLA upgrade plans

Major upgrade projects

Goals of higher laser availability and performance Converting the present SACLA system step-by-step into the system with:

- multi-electron beam drivers,
- various seeding schemes,
- pulse-by-pulse beam switcher,
- 5 UND BLs including one SX BL
 - P1: Construction of new undulator beamline BL2 ~Mar. 2015
 - P2: Pulse-by-pulse e-beam switching ~June 2015

P3: Construction of self-seeding system ~Dec. 2013

P4: Relocation and upgrade of SCSS test accelerator ~Dec. 2014

P5: Increase of e-beam energy up to 9- GeV ~Sep. 2014

P represents "Project"

P4: Relocation of SCSS test accelerator

- SCSS test accelerator (e-beam energy 250 MeV) was a prototype for SACLA
 - Stable EUV FEL (200–50 nm)
 - HHG seed 61.5 nm
 - Shut down in May 2013

- Relocation to the SACLA undulator hall is in progress
- SCSS becomes a dedicated electron beam driver for BL1
- Initial beam energy ~450 MeV
- Potentially up to ~1.4 GeV
- Capability for EUV to soft X-rays
 26

Outline of upgrade projects

SXR undulator period 18 mm Wavelength range 15 – 60 nm initially Date of SX FEL operation: Autumn 2015

European XFEL project

- Built by 12 European Nations at DESY, Hamburg
- Up to 17.5 GeV SC Linac, 27000 pulses per second
- Three moveable gap undulators for hard and soft X-rays
- Initially 6 equipped experiments

XFEL Undulator Systems

European

- Flexible beam distribution with simultaneous operation of 3 experiments
- Up to 27000 bunches/second in 10 Hz bursts
- SASE3 (soft X-ray) operates either with 'spent' beam or 'fresh bunch technique
- Fast variation of e-beam properties under investigation

Soft X-ray capabilities

- Baseline layout pure SASE
- 68 mm period, tunable PM undulators
- Recent studies show potential to obtain 10 TW radiation at 3-5 keV with strong compressed bunches
- Self-seeding options and helical 'after-burner' under study (funding ...)
- Photon energy range covered by three energy working points and gap movement
 Carbon K-edge:
 284 eV i Nitrogen K-edge:

Status

Civil Construction

- Underground construction finished
- Surface buildings construction on-going
- **Technical Infrastructure**
 - Injector building and accelerator tunnel finished by 9/2013
 - Remaining installation ongoing till 2015
- Industrial production and treatment of SC cavities (as of 05.08.2013)
 - ~100/800 cavities delivered, > 60 cavities tested in vertical test stand
 - 'useable' gradient 29 MV/m (23.5 MV/m required)
- Assembly of 103 cryo-modules
 - 2 of 3 pre-series modules assembled
 - Series assembly to start late summer 2013
- High Power RF components (modulator, pulse transformer, connection module klystron) delivered to about 50%
- Undulator series production in full swing, about 40 of 91 units delivered, tuning on-going
- About 50 % of 800 warm magnets produced
- Warm vacuum beam line (about 3.3 km) series production started

Schedule

- High power rf-gun test 10/2013
- First beam through injector 09/2014
 - Challenging because of cryo components availability
- All infrastructure ready 04/2015
- Start beam commissioning (T0) 07/2015
 - Challenging because of module assembly, test and installation schedule
- First lasing possible @ SASE 1 (T0 + 6 month) 12/2015
 - Challenging because of short commissioning time

Korean 4-th generation Light Source: PAL-XFEL

0.1-nm Hard X-ray 10-GeV XFEL

- S-band linac, 1.1 km
- ♦ Wavelength
 - Soft x-ray: 10 nm ~ 1 nm
 - Hard X-ray: 1.0 ~ 0.1 nm
 - Extendable to 0.06 nm
- Undulator Beamline
 - 3 Hard X-ray / 2 Soft X-ray lines

William Pro-

Pohang Light Source

PAL-XFEL site May 2, 2013

FEL commissioning and first experiments planned for 2016

Two undulator lines for Phase 1

(~110 m including Dump Section)

Hard X- ray Undulator Hall
(~225 m including Dump Section)

Undulator Line	SX1	
Wavelength [nm]	1 ~ 4.5	
Beam Energy [GeV]	3.15 (2.55)	
Wavelength Tuning [nm]	3 ~ 1 (Undulator gap) 4.5 ~ 3 (Beam Energy)	
Undulator Type	Planar + APPLE II	
Undulator Period [cm]	3.4	
Undulator Gap [mm]	8.3	

Need "dechirper" for longitudinal phase space control in soft X-ray beamline

- Energy chirp is larger than FEL parameter
- Need strong longitudinal wake
- "Dechirper"
 - Experiments at PAL-XFEL injector test facility confirm performance

Heung-Sik Kang

Sven Reiche

SwissFEL layout

- S-band RF photo-electron gun, injector, 100 Hz
- C-band linac up to 6 GeV
 - Fewer RF stations, less real estate and electrical power than S-band
- Branch line for future Athos (SXR FEL)
 - 40 mm period APPLE-II type variable gap undulators with polarization control
 - Self-seeded
 - PSI, SLAC, LBNL on soft X-ray seeding experiment in LCLS scheduled for end 2013
- 2 bunch operation (28 ns) with distribution to Aramis and Athos at 100 Hz

PAUL SCHERRER INSTITUT

- S-band RF photo-electron gun, injector, 100 Hz
- C-band linac up to 6 GeV
 - Fewer RF stations, less real estate and electrical power than S-band
- Branch line for future Athos (SXR FEL)
 - 40 mm period APPLE-II type variable gap undulators with polarization control
 - Self-seeded
 - PSI, SLAC, LBNL on soft X-ray seeding experiment in LCLS scheduled for end 2013
- 2 bunch operation (28 ns) with distribution to Aramis and Athos at 100 Hz

SwissFEL construction site 27 June 2013

PAUL SCHERRER INSTITUT

PAUL SCHERRER INSTITUT

Sven Reiche

PAUL SCHERRER INSTITUT

- For seamless continuation of SwissFEL efforts towards ATHOS additional funds need to be secured for 2017-20 period
- May be difficult before presentation of first ARAMIS results

Summary: many exciting developments in soft X-ray FELs

- Several operational: upgrades to enhance performance and capacity
 - FLASH: FLASH2 adds capacity, tunability, and seeding (2014)
 - FERMI@elettra: FEL-2 longitudinal HGHG at 4 nm; higher rep-rate (2014)
 - SACLA: Upgrades to improve stability, add soft X-ray capability with SCSS (2015)
 - LCLS: LCLS-II adds CW SCRF, high rep-rate, high average power, and capacity (2020)
- Several new projects are at various stages of development
 - XFEL: 17.5 GeV SRF linac, SXR and HXR capability; high-power beams (SASE, 2015)
 - PALFEL: compact 10 GeV HXR, 3.15 GeV branch line SXR (SASE, 2016)
 - SwissFEL: compact 6 GeV (2017), SXR future (3 GeV branch line, self-seeded, 2019?)
- Several facility proposals
 - IRIDE, NGLS, SXFEL, WIFEL ...
- Many FEL R&D projects and facilities
 - APEX, ATF, CLARA, JLAB, LUNEX-5, MAX-IV, NLCTA, SCSS, SDL, SDUV FEL, SPARC, WiFEL,

Summary: many exciting soft X-ray FEL projects

Facility /	Maximum	Main linac type	X-ray pulse time structure	FEL type and tuning range	Radiator undulator period, type
Project	electron beam				
-	energy				
FLASH	1.2 GeV	Superconducting L-band	Burst, flexible, up to ~500 bunches separated by ≥ 0.33 µs per pulse, 10 Hz burst rate	SASE: 4.2–40 nm	27.3 mm, fixed gap PM
FLASH-II	1.2 GeV	Superconducting L-band	Burst, flexible, bunches separated by $\geq 1 \mu s$ per pulse, 10 Hz burst rate	SASE: 4–40 nm HGHG: UV seed, 20–40 nm	31.4 mm, variable gap PM
sFLASH	1.2 GeV	Superconducting L-band	Burst, flexible, bunches separated by ≥ 0.33 μs per pulse, 10 Hz burst rate	HGHG: UV seed, ≤60 nm (cascade for shorter wavelength) HHG 38.2 nm seed EEHG, LSCA options under study	31.4 mm + 33 mm, variable gap PM
LCLS	15 GeV	Normal conducting S-band	120 Hz CW	SASE: 0.12–4.5 nm Self-seeded HXR: 0.16–0.18 nm	30 mm, fixed gap PM
LCLS-II	4 GeV	Superconducting L-band	100 kHz CW	Self-seeded: 1–5 nm Self-seeded: 0.25–1.2 nm	~40mm, variable gap PM ~26mm, variable gap PM
FERMI@elettra	1.2 GeV	Normal conducting S-band	10 Hz, upgrading to 50 Hz, CW	HGHG; UV seed 20–65 nm (FEL1) HGHG 2-stage cascade; UV seed, 4–20 nm (FEL2)	55.2 mm, variable gap APPLE-II PM 55.2 mm + 34.8 mm variable gap APPLE-II PM
SACLA	8.5 GeV (SCSS: 0.45 – 1.4 GeV)	Normal conducting C-band	10 Hz, capable of up to 60 Hz, CW	SASE: 0.6 Å Self-seeded SXR planned: 15–60 nm	18 mm in-vacuum variable gap PM
EuXFEL	17.5 GeV	Superconducting L-band	Burst, flexible, up to ~2700 bunches separated by ≥ 0.22 µs per pulse, 10 Hz burst rate	SASE: 0.5–4 Å SASE: 0.4–4.5 nm	40 mm, variable gap PM 68 mm, variable gap PM
SwissFEL	5.8 GeV	Normal conducting C-band	100 Hz, CW	SASE: 1–7 Å Self-seeded SXR planned: 0.7–7 nm	15 mm in-vacuum variable gap PM 40 mm variable gap APPLE-II PM
PAL-XFEL	10 GeV	Normal conducting S-band	60 Hz, CW	SASE: 0.6–6 Å Self-seeded SXR planned: 1–4.5 nm	24.4 mm variable gap PM 34 mm variable gap APPLE-II PM

ACKNOWLEDGEMENTS

Marie-Emanuelle Couprie, Paul Emma, Massimo Ferrario, Luca Giannessi, Winfried Decking, Heung-Sik Kang, Tor Raubenheimer, Sven Reiche, Robert Schoenlein, Siegfried Schreiber, Hitoshi Tanaka, Zhentang Zhao

ACKNOWLEDGEMENTS

Marie-Emanuelle Couprie, Paul Emma, Massimo Ferrario, Luca Giannessi, Winfried Decking, Heung-Sik Kang, Tor Raubenheimer, Sven Reiche, Robert Schoenlein, Siegfried Schreiber, Hitoshi Tanaka, Zhentang Zhao

Thank you for your attention!