High Pressure Gas-Filled RF Cavities for Use in a Muon Cooling Channel

> Ben Freemire Illinois Institute of Technology for the Muon Accelerator Program

North American Particle Accelerator Conference Tuesday, October 1, 2013

A Muon Accelerator

- Most beam and RF parameters in this talk will be taken from the report coming from Snowmass 2013
- A staged facility is planned
- Sited at Fermilab, based on Project X

FERMILAB-CONF-13-307-APC

U.S. Muon Accelerator Program

Enabling Intensity and Energy Frontier Science with a Muon Accelerator Facility in the U.S.: A White Paper Submitted to the 2013 U.S. Community Summer Study of the Division of Particles and Fields of the American Physical Society

Contributed by the U.S. Muon Accelerator Program (MAP) and Associated Collaborators Three programs are proposed:

- Neutrinos from STORed Muons (nuSTORM)
- Neutrinos from Muon Accelerators at Project X (NuMAX)
- Muon Collider (MC)

Facility Parameters

- Each facility has slightly different beam and RF requirements
- Definition: A beam *pulse* is comprised of (potentially) multiple *bunches*
- nuSTORM and NuMAX:
 - No cooling (i.e. not relevant in this talk)
- NuMAX+:
 - 4D cooling
 - ~10¹⁰ μ /bunch
 - Not as challenging in terms of cooling
- I will focus on colliders

- Higgs Factory:
 - 10⁶ reduction in 6D emittance
 - 2-4x10¹² μ/pulse
 - bunched at 201 or 325 MHz
 - $-\sigma_{s} \sim 6 \text{ cm}$
 - TeV Collider:
 - 10⁶ reduction in 6D emittance
 - 2x10¹² µ/pulse
 - bunched at 201 or 325 MHz
 - $-\sigma_{s} = 0.5 1 \text{ cm}$

Cooling

- Bunching and phase rotation in diagram shown at right is done at 201 MHz, i.e. 12 bunches with 5 ns spacing
- If beam is bunched at 325 MHz (i.e. Project X), 21 bunches with 3 ns spacing → bunch intensity decreases
- I will consider the 325 MHz case

- Synergy between accelerator designs
- Bunch intensity less for NF than MC (10¹⁰ vs. 10¹¹⁻¹²)
- Plasma loading within a bunch is negligible
- After the merge: only one bunch
 → ~millisecond recovery time

Helical Cooling Channel (HCC)

- An HCC uses HPRF cavities arranged in a helix within a solenoid
- This provides dispersion, which when combined with ionization cooling produces continuous 6D cooling through emittance exchange
- A series of six HCC cells ~230 m long reduces the 6D emittance by a factor of 175,000

- The RF cavities contain a dielectric insert, are terminated with thin Be windows, and are thermally isolated from the magnets
- A magnetron supplies RF power through coaxial RF feedthroughs to each cell
- See posters for more information

B. Freemire

HPRF Concept

- As a beam of particles traverses a gas-filled cavity, it ionizes the gas
- The number of electron-ion pairs can be calculated:

Plasma Loading

- Ionization electrons collide with gas molecules and transfer energy from the cavity to the plasma – this is called plasma loading
- Ions also contribute to plasma loading, however this effect is ~100x smaller than electrons
- Electrons quickly come into equilibrium and drift with the applied electric field
- The energy absorbed by a charged particle can be evaluated:

$$dw = q \int v E_0 \sin(\omega t) dt = q \int \mu E_0^2 \sin^2(\omega t) dt$$

 $v = drift \ velocity$

 $\mu = mobility$

• The addition of an electronegative gas dopant decreases the electron's lifetime and minimizes plasma loading

HPRF Beam Test

- A beam test of an HPRF test cell was performed at the MuCool Test Area at Fermilab
- Hydrogen and deuterium parent gases were doped with dry air and sulfur hexafluoride
- Dopants dramatically improved the cavity performance
- Many conditions of a real HCC were producible (electric & magnetic fields, electron KE)
- Gas density (100 atm \rightarrow 180 atm) and plasma density (7x10¹¹ cm⁻³ \rightarrow 5x10¹⁵ cm⁻³) will be higher in an HCC
- Extrapolation is necessary

Extrapolating to Muon Cooling Channel Parameters

- To minimize plasma loading, fast negation of electrons through attachment to oxygen or recombination with hydrogen ions is desired
- Ion-ion recombination is also important
- The time constant for electron capture at varying pressures, dopant concentrations and electric fields has been measured
- The ion-ion recombination rate has also been measured, and shows only slight pressure dependence

B. Freemire

Plasma Loading

- A plasma loading calculation with:
- Beam parameters
 - 21 bunches
 - 10^{11} or 10^{12} µ/bunch (delta function)
 - bunched at 325 MHz
 - inject at 160° RF phase
- Plasma dynamics

- HPRF cavity parameters
 - $E_0 = 20 \text{ MV/m}$
 - P = 180 atm
 - f = 325 or 650 MHz
 - 10 cm long
 - U = 19 or 4.7 J
- electron attachment time, electron-ion recombination rate, ion-ion recombination rate based on extrapolations of measurements made at the MTA
- energy loss for charged particles based on measurements made at the MTA and ion mobilities from the Literature

Plasma Loading Calculation Results

- $10^{12} \mu$ /pulse dicates $10^{11} 10^{12} \mu$ /bunch to account for losses
- Any decrease in accelerating voltage subsequent bunches see will increase longitudinal emittance

RF freq.	MHz	325		650		
Bunch int.	µ/bunch	10 ¹²	10 ¹¹	10 ¹²	10 ¹¹	
Energy dissipated	J	1.84	0.292	1.98	0.317	
% of total energy	-	9.7	1.5	42	6.7	
$\% V_{accel}$ last bunch sees	-	95	99.2	76	96.6	

Conclusions

- Initial evidence is that HPRF cavities would work in an HCC
- Effects of higher gas and plasma density must be considered
 - Simulations underway to address this
 - Evidence suggests that higher densities have a positive effect on cavity performance
- Wakefields and beam loading have not been considered
 - Serious consideration for $10^{11} 10^{12} \mu$ /bunch
 - Not unique to HPRF cavities
 - Impact and mitigation being investigated
- End-to-end HCC simulation with real parameters underway

Backup Slides

Facility Parameters

Suctors	Devenetere	l luit	NUCTODM	NUMAY	NI. MAY							
System	Parameters	Unit	IUSTORIM	NUWAA	NUWAAT	IDS-NF	4 Muon Collider Baseline Parameters					
for- nce	Stored μ+ or μ-/year		8×10 ¹⁷	2×10 ²⁰	1.2×10 ²¹	1×10 ²¹		Higgs Factory		Multi-TeV	Baselines	
Per ma	v_{e} or v_{μ} to detectors/yr		3×10 ¹⁷	8×10 ¹⁹	5×10 ²⁰	5×10 ²⁰			Startup	Production		
Detector	Far Detector:	Туре	SuperBIND	MIND /	MIND /	MIND	Parameter	Units	Operation	Operation	4.5	
	Distance from Ding		. 1.0	Mag LAr	Mag LAr	2000	ColVI Energy	Tev	0.126	0.126	1.5	3.0
	Distance from Ring		1.9	20/10	100/20	2000	Avg. Luminosity	10 ³⁴ cm ⁻² s ⁻¹	0.0017	0.008	1.25	4.4
	Magnetic Field	T	2	0.5-2	0.5-2	1-2	Beam Energy Spread	%	0.003	0.004	0.1	0.1
	Near Detector:	Туре	SuperBIND	Suite	Suite	Suite	Higgs/10 ⁷ sec		3 500	13 500	37 500	200.000
	Distance from Ring	m	50	100	100	100	Cincurateran	luna	5,500	10,000	27,500	200,000
	Mass	kT	0.1	1	2.7	2.7	Circumference	кт	0.3	0.3	2.5	4.5
	Magnetic Field	Т	Yes	Yes	Yes	Yes	No. of IPs		1	1	2	2
Neutrino Ring	Ring Momentum (P _μ)	GeV/c	3.8	5	5	10	Repetition Rate	Hz	30	15	15	12
	Circumference (C)	m	480	600	600	1190	β*	cm .	3.3	1 7	1 (0.5-2)	0.5 (0.3-3)
	Straight section	m	185	235	235	470		1012				
	Arc Length	m	50	65	65	125	No. muons/bunch	10**	2	4	2	2
	Initial Momentum	GeV/c	-	0.22	0.22	0.22	No. bunches/beam		1	1	1	1
ation	Single-pass Linac-	GeV/pass MHz	-	0.95	0.95	0.56	Norm. Trans. Emittance, ε_{TN}	π mm-rad	0.4	0.2	0.025	0.025
elera	RLA I-	GeV/pass	-	0.85	0.85	0.45	Norm. Long. Emittance, ϵ_{LN}	π mm-rad	1	15	70	70
Acce	4.5-pass RLA	MHz GeV/pass	-	325	325	201	Bunch Length, σ_s	cm 🔇	5.6	6.3	1	0.5
	RLA II-	MHz 201 Beam Size	Beam Size @ IP	μm	150	75	6	3				
Cooling			No	No	4D	4D	Beam-beam Parameter / IP		0.005	0.02	0.09	0.09
Proton Source	Proton Beam Power	MW	0.2	1	3	4	Proton Driver Power	MW	4 [♯]	4	4	4
	Proton Beam Energy	Gev	120	3	3 105	10						•
	Protons/year Bonotition Eroqueney	1×10 ²¹	0.1	41	125	25	Could begin operation with Project X Stage 2 beam					
	Repetition Frequency	ΠZ	0.75	10	10	50						

10/1/13