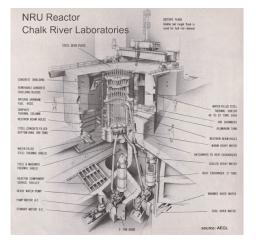


Low Energy Medical Isotope Production

Naomi Ratcliffe naomi.ratcliffe@hud.ac.uk IIAA, University of Huddersfield UK


- Cover the use of radioactive isotopes for diagnostic and therapy applications in medicine
- Scope of this presentation will be radio isotopes used for SPECT or PET imaging
- **SPECT** Single Photon Emission Computed Tomography
 - Uses a metastable γ -emitting isotope delivered to a specific region of interest.
 - Computer reconstruction of the recorded γ-rays to develop a map of the uptake area of the isotope.
- **PET** Positron Emission Tomography
 - Same approach as SPECT only using a positron emitting isotope to produce secondary γ-rays which are detected for the reconstruction

Medical Isotope Crisis

SIEMENS

- 2010:
 - long term shutdown of the principle isotope production reactors, Canadian NRU and Petten HFR
 - This caused a significant depletion in the ^{99m}Tc available for SPECT scans
 - ~90% of procedures cancelled/postponed
- These reactors are old and coming to the end of their life
 - Shutdown 2016-2020.
 - There could be a similar world wide situation

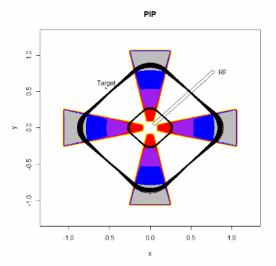
As yet no wide scale plan in place to maintain isotope supply

Solutions

SIEMENS

- Production of ^{99m}Tc is moving from reactor based systems to accelerator based routes
- Some of the initial development work has been performed by the Canadian associations TRIUMF and CLS
- CLS using electron linac
- TRIUMF using proton cyclotron ~20MeV

- We propose using a proton machine <10MeV to produce ^{99m}Tc and other replacement/supporting isotopes
- Low energy isotope production utilising the typically low threshold/high cross section (p,n) reaction while minimizing the contaminants produced



Low Energy Accelerators

- Current medical cyclotrons >15MeV
- New machine requirements:
 - <10MeV
 - CW/DC
 - high current
 - Small/compact

 The size, lower potential backgrounds and simplicity lend these technologies to widespread use in hospitals getting the production of radioisotopes closer to point of delivery

1. ns-ffag - IIAA, Huddersfield

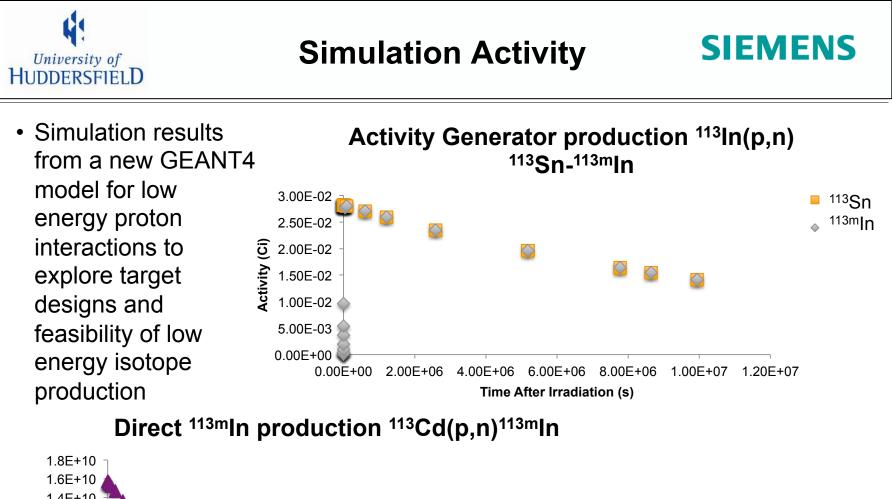
2.ONIAC – Siemens, RAL

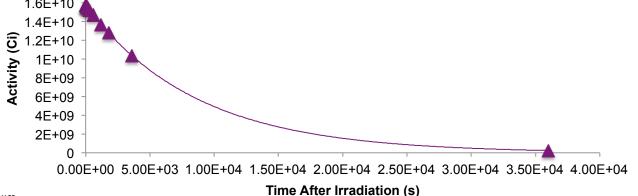
SIEMENS

- Several p and d driven reactions are available for both generator and direct production routes of ^{99m}Tc.
 - However for the majority of these reactions the threshold is either too high or cross section too low to be viable.
- There is one potentially promising reaction for low energy (<10MeV)
 ^{99m}Tc production

¹⁰⁰Mo (p,2n) ^{99m}Tc

- This is also the focus of the TRIUMF studies although at higher energies >20MeV
- Reaction cross section at <10MeV is low
 - Implementation of a high current beam configuration could be used to increase the production rate

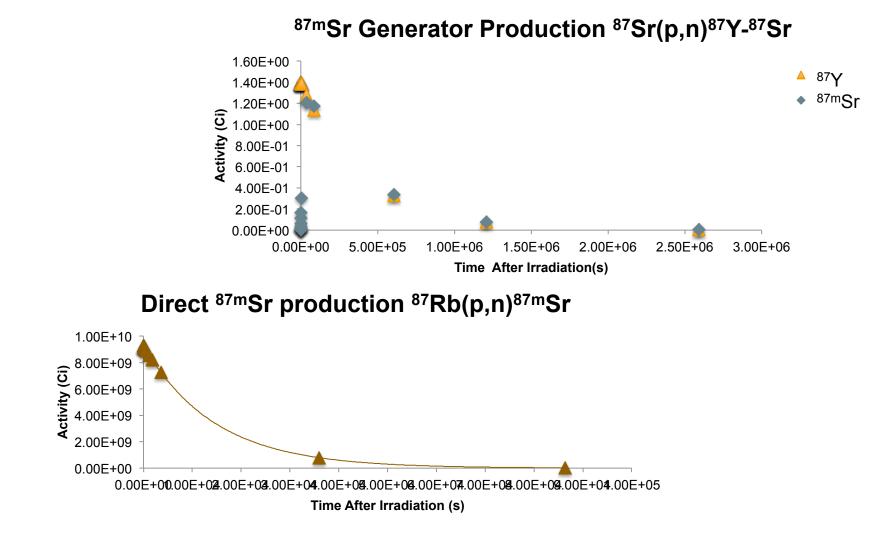



^{113m}Indium

- Metastable isotope decays via 392keV γ -rays with half life 1.7hrs
- ^{99m}Tc replacement for brain and lung scans
- Currently produced mainly using the generator method:
 - Parent isotope ¹¹³Sn decaying into ^{113m}In
- Using low energy methods there are two production routes available:
 - Direct production via the reaction

¹¹³Cd (p,n) ^{113m}In

• Generator production via the reaction


- Metastable isotope decays via 388keV,γ-rays with half life 2.8hrs
- ^{87m}Sr is used in skeletal SPECT imaging for diagnosis of diseases such as osteoporosis
- Proton and α > 20 MeV currently used to make ⁸⁷Y, the ^{87m}Sr generator.
- Low energy production is possible for both direct and generator methods:
 - Direct production

Generator production

Simulation Activity

SIEMENS

- It is possible to produce ^{99m}Tc using a direct reaction using a proton driven reaction below 10MeV
 - Yields obtained from such a reaction are low but could be offset by high currents
- Direct proton production routes for the production of both ^{113m}In and ^{87m}Sr have been demonstrated
 - These routes are possible at relatively low proton energies and that higher activities can be achieved.
 - This represents a significant advantage over conventional production methods
- Results from this study have demonstrated the potential of low energy proton machines as a source for medical grade radioisotopes

- Following on from this successful simulations study, further work will be carried out to:
 - 1. Optimisation of these target designs for the potential of isotope production
 - 2. Initiate a broader investigation of as yet unused isotopes that may have the potential for use in either SPECT or PET imaging techniques
 - 3. Identification of the best methods of producing said isotopes

Acknowledgements

SIEMENS

University of Huddersfield

- Prof R. Cywinski
- Prof R. Barlow
- Prof R. Edgecock
- Dr C. & A. Bungau

Siemens

- Prof O Heid
- Prof P. Beasley

• Project funding EP- SRC/Siemens CASE studentship.