Perspectives and Challenges for Diffraction Limited Storage Ring Light Sources

Outline

• What is a diffraction-limited storage ring (DLSR)?

SLAC

- Scientific motivation for DLSRs brightness and coherence
- Design challenges and solutions
- Future DLSRs USRs?

Many appreciated contributions from:

- M. Borland, APS
- Y. Cai, SLAC
- Z. M. Eriksson, MAX-IV

SLAC

- T. Rabedeau, SLAC
- C. Steier, ALS

and light sources that provided parameter and design information:

ALS	APS	BAPS (IHEP
Diamond LS	ESRF	MAX-IV
NSLS-II	Sirius	SLAC
SLS	Soleil	SPring-8

Diffraction

K-J Kim in Characteristics of Undulator Radiation, AIP 1989

Coherent beam of wavelength λ focused to spot size Δx will diffract with angle $\Delta \psi = -\lambda/\Delta x$

Time-harmonic electric field of form $E(\mathbf{x}; \mathbf{z})e^{-i\omega t}$ satisfies wave equation

$$\left[\frac{\partial^2}{\partial z^2} + \left(\frac{\partial}{\partial x}\right)^2 + k^2\right] E(x; z) = 0, \quad k = \frac{\omega}{c} = \frac{2\pi}{\lambda} \qquad \mathbf{x} = (x, y)$$

In transversely coherent beam, spatial distribution $E_k(x,z)$ for wavenumber k is related to angular distribution $\mathcal{E}_k(\psi, z)$ by Fourier transform (for 1-D in x):

$$\mathcal{E}_{k}(\psi, z) = \frac{1}{\sqrt{2\pi}} \int E_{k}(x, z) e^{-ik\psi x} dx \qquad E_{k}(x, z) = \frac{1}{\sqrt{2\pi}} \int \mathcal{E}_{k}(\psi, z) e^{ik\psi x} d\psi$$
$$\psi \ll 1$$

Diffraction-limited emittance

For fully coherent Gaussian laser beam spatial distribution at waist (z = 0):

$$E_k(x,0) = E_k(0,0)\exp(\frac{-x^2}{2\sigma_{Ex}^2}) \qquad \qquad \mathcal{E}_k(\psi,0) = \mathcal{E}_k(0,0)\exp(\frac{-\psi^2}{2\sigma_{\mathcal{E}\psi}^2}) \\ \sigma_{\mathcal{E}\psi} = \frac{1}{k\sigma_{Ex}} = \frac{\lambda}{2\pi\sigma_{Ex}} \Rightarrow \sigma_{Ex}\sigma_{\mathcal{E}\psi} = \frac{\lambda}{2\pi}$$

Photon intensity profile $\propto E^2$ and \mathcal{E}^2 :

$$\Rightarrow \sigma_{Ix}(\lambda)\sigma_{I\psi}(\lambda) = \frac{\lambda}{4\pi} = \varepsilon_r(\lambda)$$
 Diffraction limited emittance for coherent
Gaussian photon distribution

Fitting Gaussian profiles to spatial and angular profiles for **undulator radiation** at λ :

$$\Rightarrow \sigma_x (\lambda) \sigma_{\psi}(\lambda) \approx \frac{\lambda}{2\pi} = \varepsilon_r(\lambda)$$

SLAC

Diffraction limited emittance for undulator radiation from single electron filament

X-ray emittance from electron source

Transverse emittance $\Sigma_{x,y}(\lambda)$ of X-ray beam from undulator (length L) is convolution of photon emittance ε_r from e- filament and e- emittance $\varepsilon_{x,y}(e-)$ (Gaussian beams):

$$\Sigma_{x,y}(\lambda) = \varepsilon_r(\lambda) \oplus \varepsilon_{x,y}(e^{-}) = \sqrt{\sigma_r^2(\lambda) + \sigma_{x,y}^2(e^{-})} \sqrt{\sigma'_r^2(\lambda) + \sigma'_{x,y}^2(e^{-})}$$

Here

$$\sigma_{x,y}(e-) = \sqrt{\varepsilon_{x,y}\beta_{x,y}}$$

 $\sigma_r(\lambda) \approx \frac{\sqrt{2\lambda L}}{2\pi}$

$$\sigma'_r(\lambda) = \sigma_{\psi}(\lambda) \approx \sqrt{\lambda/2L}$$

$$\sigma'_{x,y}(e-) = \sqrt{\varepsilon_{x,y}/\beta_{x,y}}$$

Transverse emittance $\Sigma_{x,y}$ minimized when $\varepsilon_{x,y}$ is minimized and photon and ephase space orientations are matched:

$$\frac{\sigma_r(\lambda)}{\sigma'_r(\lambda)} = \frac{\sigma_{x,y}(e^{-})}{\sigma'_{x,y}(e^{-})} \Rightarrow \beta_{x,y} = \frac{L}{\pi}$$

SLAC

Diffraction-limited emittance

Spectral brightness and coherent fraction

Spectral brightness: photon density in 6D phase space

$$B_{avg}(\lambda) \propto \frac{N_{ph}(\lambda)}{(\varepsilon_x(e) \oplus \varepsilon_r(\lambda))(\varepsilon_y(e) \oplus \varepsilon_r(\lambda))(s \cdot \% BW)}$$

$$B_{pk}(\lambda) \propto \frac{N_{ph}(\lambda)}{(\varepsilon_x(e^-) \oplus \varepsilon_r(\lambda))(\varepsilon_y(e^-) \oplus \varepsilon_r(\lambda))(\sigma_t \cdot \% BW)}$$

$$\sigma_t = \text{bunch length}$$

Coherent fraction:

$$f_{coh}(\lambda) = \frac{\lambda/4\pi}{(\varepsilon_x(e) \oplus \varepsilon_r(\lambda))} \cdot \frac{\lambda/4\pi}{(\varepsilon_y(e) \oplus \varepsilon_r(\lambda))}$$

Coherent fraction

Coherent flux is important too: a low coherent fraction and high flux can yield the same coherent flux as a high coherent fraction and low flux

SLAC

Optimize tradeoff between low of emittance vs. stored current

from M. Borland, GRC 8/13

"Pure" meaning: A ring is diffraction-limited for wavelength λ when the eemittance is so small that it might as well be zero:

$$\varepsilon_{x,y}(e-) \ll \varepsilon_r(\lambda) = \frac{\lambda}{2\pi} (or \ \frac{\lambda}{4\pi} or \ \dots)$$

More common meaning: the electron emittance is about the same as the photon emittance

Note: many rings operate now with $\varepsilon_y << 1\text{\AA}/4\pi = -8$ pm-rad by reducing vertical coupling to a very small number

Emittance scaling with energy and circumference:

$$\varepsilon_0 = F(\nu, cell) \frac{E^2}{(N_s N_d)^3} \propto \frac{E^2}{C^3}$$
 for fixed cell type

 $\varepsilon_x = \frac{1}{1+\kappa}\varepsilon_0$ $\varepsilon_y = \frac{\kappa}{1+\kappa}\varepsilon_0$ $N_s = \#$ sectors in ring, $N_d = \#$ dipoles/sector

Emittance reduction with damping wigglers:

$$\frac{\varepsilon_{w}}{\varepsilon_{o}} = \frac{1+f}{1+\frac{L_{w}}{4\pi \rho_{o}} \left(\frac{\rho_{o}}{\rho_{w}}\right)^{2}} \approx \frac{1}{1+\frac{U_{w}}{U_{o}}}$$

U₀ = energy loss/turn in dipoles U_W = energy loss/turn in wigglers

Emittance reduction with damping partition:

$$\epsilon_x = C_q \frac{\gamma^2}{J_x} \frac{\oint H(s)/\rho(s)^3 \, ds}{\oint 1/\rho(s)^2 \, ds}$$

Gradient dipoles Robinson wigglers Amplitude bumps in quads

Damping partition /

Brightness and coherence of present rings

----SLAC

Best-available brightness and coherent fraction for selected presently-operating rings, with operating parameters and insertion devices.

Parameters provided by facility contacts.

Compiled by M. Borland for BESAC Sub-Committee meeting, July 2013.

Brightness and coherence of near-future rings

Brightness and coherence of planned rings

-SLAC

Selected upgrades now being planned (except APS-II), with anticipated parameters and ESRF-specified insertion devices.

Parameters provided by facility contacts.

Compiled by M. Borland for BESAC Sub-Committee meeting, July 2013.

Notes:

- 1. ESRF-II: 6 GeV, 200mA, 150 pm
- 2. SPring-8-II: 6 GeV, 300 mA, 67pm

Brightness and coherence of future rings

---SLAC

Selected diffraction-limited rings now being designed, with identical Nb₃Sn superconducting insertion devices and some PM devices.

Parameters provided by facility contacts.

Compiled by M. Borland for BESAC Sub-Committee meeting, July 2013.

Notes:

- 1. 0.2km/2GeV: ALS-II, 52 pm
- 2. 1.1km/6GeV: APS-II, 80 pm
- 3. 1.4km/6GeV: SP8-II, 2nd stage, 34 pm
- 4. 2.2km/6GeV: PEP-X, 5 pm
- 5. 6.2km/9GeV: tauUSR, 3 pm

6. Except for 0.2km ring, uniform selection of SCUs and APS HPMs used.

Properties of DLSRs

- Brightness and coherence are as high as possible for given beam current
- Small horizontal and vertical beam sizes and the possibility of "round" beams
- Short bunches

courtesy of C. Steier

- ~5-10 ps RMS from low momentum compaction factor bunch lengthening usually needed to combat emittance growth from IBS and improve lifetime
- "Long" lifetime:

Touschek lifetime increases with small bunch dimensions

- Large circumference for multi-GeV rings (km)
- Damping wigglers used in some cases to combat IBS and reduce emittance by ~x2-3
- On-axis "swap-out" injection for aggressive lattices having small dynamic aperture

DLSRs: so what?

BESAC Subcommittee on Future Light Sources: July 10-12, 2013

A consensus report on tuture opportunities from scientists at

ALS, LBNL APS, ANL NSLS-II, BNL SSRL, SLAC together with a broad community of scientists at laboratories and universities.

DLSR capabilities – coherence and brightness

Transversely coherent x-rays

- Uniform phase wavefronts: coherent imaging, holography, speckle, etc.
- Focusable to smallest spot size: nano-focus
- **High flux** (~10¹⁴-10¹⁵ photons/sec) in small spot: slits may not be required, etc.
- Round beams: H-V symmetric optics, circular zone plates, flexibility in optics

Advanced applications

- Coherent diffractive imaging with wavelengthlimited spatial resolution; ptychography
- **Spectroscopic nanoprobes** using powerful x-ray contrast modes: XRF, XAS/XES, ARPES, RIXS
- Photon correlation scattering/spectroscopy
- Science case continues to be developed
- Addresses "Grand Challenge Science"
- Some issues with coherence:
 - Reduced depth of focus a problem for some forms of imaging
 - **Speckle** from coherent beams a problem for some applications
 - These problems can be resolved by "spoiling" beam on beamline

SLAC

Fundamental challenges of low emittance

Inescapable fact

from M. Borland, GRC 8/13

- To reduce the amplitude of dispersive orbits, must focus more frequently and more strongly
- Focusing (quadrupole) elements have chromatic aberrations
 - Sextupole magnets added to correct these
 - Introduces higher order aberrations
 - More sextupoles or octupoles added to correct these...
- As N_d is increased to reduce emittance¹
 - Stronger chromatic correction sextupoles increase like N_d
 - Dynamic aperture decreases like 1/N_d
 - Second order chromaticities increase like N_d

Stronger focusing leads to difficult non-linear dynamics

- Poor "momentum aperture" \Rightarrow reduced lifetime \Rightarrow frequent injection
- Poor "dynamic aperture" \Rightarrow greater difficulty injecting \Rightarrow on-axis injection?

1: M. Borland, IPAC12, 1013-1017.

2: M. Borland, "Can APS Compete with the Next Generation," 2002; L. Emery et al., PAC03, 256.

Fundamental challenges – cont.

Intra-beam scattering (IBS)

- Multiple electron-electron scattering in a bunch
- Leads to increased emittance and energy spread
- Fights the beneficial E² scaling of emittance

- Mitigations:

- Many low-intensity bunches
- Round beam s
- Bunch lengthening system
- Damping wigglers

Beam instabilities

- Beam blow-up \Rightarrow brilliance reduction
- transverse beam oscillations \Rightarrow beam losses
- Longitudinal: primarily from cavity HOMs
- Mitigations: mode-damped cavities, smooth chamber transitions, low-Z chamber material, low charge/bunch, longer bunches, feedback

X-ray optics

- Advances in optics needed to preserve coherence, handle high power densities
- Aided by developments for X-ray FELs

APS emittance at 200 mA as a function of energy with and without IBS

DLSRs: why now and not earlier?

Multibend achromat (MBA) lattices

- Lattice design evolution from DBA, TBA to 4BA,...MBA:
- Increased N_D, strong focusing, low dispersion, gradient dipoles
- History:

1993: QDA by Einfeld at al. NIMA 335(3)

1994: SLS early design with 7BA, short superbend (Joho and Streun, EPAC'1994)

1995: 7BA by Einfeld et al. (0.5 nm-rad, 3 GeV, 400m), Proc. PAC 95

DLSRs: why now? – accelerator physics

Ring design app for Android – M. Borland

- A free Android app is available that lets you explore storage ring scaling
 - Also has synchrotron radiation calculations, FELs, top-up/swap-out, etc.
 - Search for "Michael Borland TAPAs" on the Google store

Ring scaling

Undulator radiation

AT&T 🛨 🚻 🔀 81° 🖇	🕅 🗊 📶 67% 🛑 1:09 PM	
TAPAs: Toolkit for Accelerator Physics on Androids		
Max. Harmonic:	5	
Periods:	72	
Length (m):	2.376	
Plot Flux Density	Plot Central-Cone Flux	
Plot Power Density	Plot Total Power	
Presto get values. (ong-pi 3.4614. 1.2614. 4.5013. 4.		

FEL estimation

🛨 🎎 🌠 81º 🕿 🚯 🍞 📶 66% 🛑 1:13 PM			
TAPAs: Toolkit for Accelerator Physics on Androids			
Ming Xie FEL Parametrization			
Beam Energy (GeV):	7		
Peak Current (kA):	3		
Norm. Emit. (um):	0.5		
Frac. Energy Spread (%):	0.01		
Beta (m):	10		
Undulator Period (mm):	33		
Undulator K:	1.4		
Pierce Param.:	7.780183E-4		
Rad. wavelength (A):	1.741		
Photon Energy (keV):	7.122		
Gain Length (m):	3.031		
Startup Power (kW):	1.169		
Saturation Power (GW):	10.803		
Saturation length (m):	55.282		
Eta Emittance:	0.513		
Eta Energy Spread:	0.074		

DLSRs: why now? – cont.

Compact magnet and vacuum technology

NEG-coated vacuum chambers enable small apertures to enable high magnet gradients

Pioneered at CERN, used extensively at Soleil, and adopted for MAX-IV and Sirius MBA lattices

• Precision magnet pole machining for small aperture magnets, combined function magnets, tolerance for magnet crosstalk (developed extensively at MAX-Lab)

SPring-8 concept K. Soutome

MAX-IV Courtesy S. Leemans

SLAO

DLSRs: why now? – cont.

Other advances in accelerator and light source technology

- Fast kickers for swap-out injection
- Sub-micron e- BPMs and orbit feedback
- Accelerator and beam line component mechanical stabilizing systems
- Micron resolution single pass BPMs (non-linear lattice) tuning)
- "In-situ" magnet measurement and alignment methods (e.g. NSLS-II)
- Mode-damped RF cavities (fundamental and harmonic)
- Highly stable solid state RF power sources
- High performance X-ray optics to preserve coherence (e.g. for FELs)
- High performance IDs (superconducting, Delta, etc.)

Delta undulator prototype - A. Temnykh

Fast kickers – KEK ATF

Higher order resonances detected by turn-turn BPMs (A. Franchi)

SPring-8 concept based on NSLS-II vibrating wire method - K. Soutome

SC undulator development at LBNL (S. Prestemon et al.), APS (E. Gluskin et al.) and elsewhere

DLSR design optimization

R. Hettel SPEAR 3 Design Jan. 17 2003 SLAC

DLSR design – some comments on optimization

Brightness/coherence vs. flux

- User community is divided some need flux, not brightness
- Possible to get same coherent flux with high current/low coherent fraction as with • high coherent fraction/lower current (e.g. PEP-X v1 @ 1.5 A)
- High flux, high emittance is generally less expensive
- Diminishing return on coherent fraction and flux as emittance is reduced

Electron energy

- High energy rings (6+ GeV) are large and costly ($\varepsilon \sim E^2/C^3$, RF voltage ~ E^4/C)
- Hard X-ray brightness can be reached with lower E, lower ε using high harmonics from high performance IDs (especially superconducting)

Lattice geometry

- ID straight section length is always an issue (5 m vs 12 m, etc)
- Spacing between ID straights is an issue with large rings: spacing between beam lines can lead to extremely large and costly experimental halls. Consolidating beam lines with hybrid lattice may be necessary

16 beam lines in PEP-X with 7BA (left) and DBA/TME hybird (right)

SLAC

Cost-performance optimization needed for every light source design Science case should drive the optimization (is 10 or 1 pm worth it? – maybe!)

MBA Lattices are becoming a reality – new rings

MAX–IV (Sweden) is taking the first pioneering step with 7BA, under construction

3 GeV, 528 m, 0.25 nm

SLAC

Sirius (Brazil) just started construction of 5BA with superbend

3 GeV, 518 m, 0.28 nm

Existing rings are planning conversion to MBA

ESRF (France)

6 GeV, 844 m, 4 nm \rightarrow 0.15 nm

- Dispersion bumps for efficient sextupoles
- Longitudinally varying field in D1, D2, D6, D7 to further reduce emittance
- Combined dipole-quadrupoles D3-4-5
- High-gradient focusing quadrupoles
- Permanent magnet dipoles

SPring-8 (Japan)

8 \rightarrow 6 GeV, 1436 m, 2.8 nm \rightarrow ~40-80 pm

APS (US - premliminary)

- $7 \rightarrow 6$ GeV, 1104 m, 3.1 nm \rightarrow ~60-80 pm
- Dispersion bumps like ESRF
- On-axis injection
- Superconducting undulators

SPring-8 MBA lattice under development

Other rings would like to convert lattices in future

SLAC

Soleil (France)

- 2.75 GeV, 354 m, 3.9 nm \rightarrow 0.5 nm
- 4BA or 5BA

Lattice and envelop functions for the SDL-SDM (left) and SDM-SDC-SDM cells (right), altogether representing 1/8th of the ring

ALS (US - LBNL)

1.9 GeV, 200 m, 2 nm \rightarrow 52x52 pm

- 9BA
- Swap-out injection from accumulator ring
- 3-T PM superbend insertions

Other rings:

- SLS (Switzerland PSI)
 2.4 GeV, 5 nm → 0.25 nm
- NSLS-II (US): ?

Future green-field DLSRs?

BAPS (China - Beijing) 5 GeV, 1-1.5 km, <100pm

Preliminary proposal

PEP-X (US - SLAC)

6 GeV, 2.2 km, 5 x 5 pm

- 7BA
- Not for a long time given LCLS-II at SLAC

TauUSR (US - Fermilab)

- 9 GeV, 2π km, 1.5 x 1.5 pm
- 7BA
- A πpe dream?

SLAC

Ultimate storage rings?

- The term "ultimate storage ring" was first use in 2000:
 A. Ropert, J.M. Filhol, P. Elleaume, L. Farvacque, L. Hardy, J. Jacob, U. Weinrich, "Towards the Ultimate Storage Ring-Based Light Source", Proc. EPAC 2000, Vienna.
- "Ultimate" inferred reducing emttance towards the diffraction limit for X-rays
- "Ultimate" may have many meanings, including providing everything for every user
- One way to make storage rings more "ultimate":

SLAC

FELs becoming more ring-like: higher rep rate, reduced photons/pulse (e.g. NGLS)

Can rings become more FEL-like: increased ph/pulse, reduced energy spread, short pulses, lasing?

Light source performance: other metrics

SASE with transverse gradient undulator

8 CEBAF SC cavities in a cryomodule produce 108 MV for longitudinal focusing

Hard XFEL oscillator? – K-J Kim

A new generation of storage ring light sources

3rd generation

MBA generation

Thank You!