

www.cern.ch

NA-PAC13 Convention Center, Pasadena, CA 29 September – 4 October 2013

The ALM C the construction of a factor of and more construction acceleration, in the factor of the factor a C & R R exceleration according to many and according to the one proof of many according many acceleration and a standard of the provider many acceleration and a standard of the provider

> Elie L.H.C. nor Erect to Aug. manifer to common they unsuched

Handre enfranted territorie

by the stand on and and the

LHC Operation at Higher Energy and Luminosity

Giulia Papotti for the LHC team

special acknowledgements to and material from: G. Arduini, T. Baer, V. Kain, W. Herr, G. ladarola, M. Lamont, E. Metral, M. Pojer, L. Rossi, G. Rumolo, G. Spiezia, L.Tavian, J. P. Tock, J. Wenninger, F. Zimmermann

outline

- introduction
- history of run 1 (2010-2012)
- ongoing shutdown and consolidation
- after the shutdown
 - parameter space
 - e-cloud and scrubbing, UFOs, beam stability, R2E
- upgrade plans

The Large Hadron Collider

Lake of Geneva

Control Room

LHC ring

installed in the 26.7 km LEP tunnel, at a depth of 70-140 m

NA-PAC13, Pasadena, CA

LHC layout

- total length: ~26.7 km
 - 8 arcs (aka sectors): ~2.8 km each
 - 8 long straight sections: ~700 m each
- 2-in-1 magnet design with separate vacuum chambers
 - p-p, ion/ion, or p/ion collisions
 - beams cross in 4 points
 - Alice, ATLAS, CMS, LHCb, LHCf, TOTEM

Iuminosity 2010-2012

CMS Integrated Luminosity, pp

- 2010, commissioning: 0.04 fb⁻¹
- 2011, exploring the limits: 6.1 fb⁻¹
- 2012, production: 23.3 fb⁻¹

beam parameters 2010-2012

L =	$kN_b^2 f \gamma_E$
	$\overline{4\pi\beta^*\varepsilon^*}$

Parameter	2010	2011	2012	Nominal
beam energy (TeV)	3.5	3.5	4.0	7.0
bunch spacing	150	75 / 50	50	25
k (no. bunches)	368	1380	1380	2808
N _b (10 ¹¹ p/bunch)	1.2	1.45	1.6	1.15
ε (μ m rad)	2.4	2.4	2.5	3.75
β* (m)	3.5	1.5 → 1	0.6	0.55
L (cm ⁻² s ⁻¹)	2×10 ³²	3.5×10 ³³	7.6×10 ³³	10 ³⁴
average pile-up @ start of fill	8	17	38	26
stored energy (MJ)	25	112	140	362

reasons for success

- 77% of nominal peak luminosity
 - high intensity and low emittance from injectors, low beta*
 - despite lower energy and lower number of bunches
- combined with healthy availability

- 2011 end of run party
 - 5.6 fb⁻¹ delivered to ATLAS

main 2013-2014 consolidations

10170 orbital welding of stainless steel lines

3 quadrupole magnets to be replaced

Installation of 612 pressure relief devices to bring the total to 1344

Consolidation of the 13 kA circuits in the 16 main electrical feedboxes

splice: joint between busbars of main dipoles or quads

NA-PAC13, Pasadena, CA

latest news on the shutdown

- progressing well
 - splice consolidation procedures well established
 - more than half the machine open
 - first sector completed (except non conformities)
 - had a few surprises
 - e.g. damaged bellows in cryogenic supply line and electrical feed boxes

- present delay: ~3 weeks
 - redo more splices than expected (30% vs 15%, confirmed in 40% of the machine)
 - other technical issues being solved
- resources increased

preparing for restart

- powering tests (Q3-Q4 2014) for hardware commissioning
 - for superconducting circuits and relative systems
 - training of dipole magnets towards 7 TeV
 - start presumably at 6.5 TeV (~100 training quenches)
- sector test (Q4 2014)
 - beam 2, sectors 78 and 67
 - goal: switch on beam dump, inject & dump on first turn
- dry runs (from Q2 2014) and machine checkout (Q1 2015)
 - checks of equipment control from the control room, until running through full cycle without beam
 - control software, interlocks, beam dump, injection, RF, transverse damper, communication with experiments, ...

beam commissioning

- a new machine to be commissioned after cold checkout
- beam commissioning phases:
 - first injection to circulating beam
 - threading, RF capture, BPM polarity checks
 - flat orbit reference with nominal bunch
 - RF/instrumentation/transverse damper setup, primary collimators setup
 - with pilot beam: measure aperture, magnet current decays
 - first ramp and squeeze
 - commission feedbacks (orbit/Q/radial), measure optics
 - add crossing and separation bumps
 - aperture and beta* measurements, setup tertiary collimators, tests of collimator functions
 - collide 2/3 nominal bunches
 - RF cogging, setup tertiary collimators
 - verify protection with controlled losses
 - at injection, flat top, after squeeze and in collisions
 - total: about 2 months in Q1 2015

intensity ramp up

- beam commissioning done with single bunches (max 2-3)
 - includes most machine protection tests
- then inject bunch trains
 - staged approach: "intensity ramp-up"
 - effects of vacuum activity, Single Event Upsets, Unidentified Falling Objects kick in at higher intensity
- example: 7 steps in April 2012
 - few short fills for cycle validation
 - 2-3 fills and 4-6 hours with 48, 84, 264 and 624 bunches
 - few longer fills for intensity or luminosity related problems
 - 3 fills and 20 hours with 840, 1092, 1380 bunches
- 2015: expect 1-2 months
 - higher energy, 25 ns scrubbing?

some of our worries

- electron-cloud and scrubbing
- Unidentified Falling Objects (UFOs)
- beam stability
- parameter space and expected peak performance
- radiation to electronics (R2E)

electron-cloud & scrubbing

- SEY>SEY_{th}: avalanche effect (multipacting)
 - SEY_{th} depends on bunch spacing and population
- e-cloud effects observed in LHC with bunch trains
 - for 150, 75, 50 and 25 ns bunch spacing
 - vacuum pressure rise, heat load on cryogenic systems
 - beam size growth, single- and multi-bunch instabilities
- e-cloud studies (Q4 2012) indicate a very slow improvement in SEY with 25 ns scrubbing
 - extended scrubbing probably required in 2015
 - or physics with degraded beam parameters

G. ladarola, G. Rumolo, L. Tavian

NA-PAC13, Pasadena, CA

growthere is a set of the set of

Secondary Emission Yield

Unidentified Falling Objects

- fast loss events (ms timescale) due to dust particles falling into the beam, caused ~20 dumps/year
 - "scrubbing" observed over the course of 2011 and 2012
 - deconditioning after technical stops, thus expected after this shutdown
 - up to 10x increased rates for arc UFOs for 25 ns beams at 4 TeV
 - at higher energy, quench margin goes down and generated losses go up: extrapolate to >100 dumps
- might impose to start with 50 ns beam and/or lower energy in the very worst case

T. Baer

beam stability

- many instabilities observed during run 1...
 - transverse and longitudinal
 - cured by high chromaticity, octupoles, transverse damper, beam-beam head-on tune spread, controlled longitudinal blow up
- but not all understood

- ...expect instabilities also at 6.5-7 TeV
 - octupoles will be less efficient (smaller beam size and less strength)
 - profit from Landau damping by head-on beam-beam
 - collide already during the squeeze is an option
 - probably high chromaticity and high gain on transverse damper
 - question of collimator settings still open (impedance!)

	50 ns	VS	25 ns
···	 lower total beam current higher brightness less e-cloud and UFOs 	•	lower pile-up cleaner physics events
 (high pile-up need to level luminosity high bunch intensity: instabilities 	• • • •	more long range collisions: larger crossing angle; higher beta* higher emittance higher injected bunch train intensity higher total beam current higher UFO rate more electron cloud: need for scrubbing, emittance blow-up;
•	 pile-up is an issue for 50 ns beams design report is 20 challenging 35-40 at start of fill in 2012 operation; probed up to 70 in machine studies: 	•	 25 ns is the baseline scrubbing might be slow with 25 ns but invest for ~3 years of operation UFOs might impair availability 50 ns is the fallback plan

- probed up to 70 in machine studies: cannot be handled by the experiments •
- might impose luminosity levelling
 - beta* levelling tried in machine studies •

expected peak performance

bunch spacing	25 ns
beta* [m]	0.5
ε*[μm] at start of fill	1.9
max. Bunch Population [10 ¹¹ p]	1.15
max. Number of bunches/colliding pairs IP1/5	2508
max. Stored energy [MJ]	300
peak luminosity [10 ³⁴ cm ⁻² s ⁻¹] in IP1/5	1.5
maximum Average pile-up (σ =85 mb)	44

with Batch Compression and Merging and Splitting scheme: nominal intensity in lower emittance

6.5 TeV

CMS Experiment at LHC, CERN Data recorded, Mon May 28-01:16:20 2012 CE91 Run/Event: 195099-/35438125 Duni.section: 65 Oxbit/Crossing: 16992111 / 2295

our clients' worries

NA-PAC13, Pasadena, CA

Radiation to Electronics (R2E)

the next 10 years

- present LHC will reach its limits in the early 2020s
 - radiation hardness of magnets (lifetime)
 - e.g. triplet and cleaning insertions to be changed in any case
 - cooling and cryogenics (limit at 1.75 10³⁴ cm⁻²s⁻¹)
 - radiation and R2E
 - shielding and removing equipment from the tunnel (superconducting link and cold powering)
- HL-LHC goal: 3000 fb⁻¹ within twelve years (run until mid 2030s)
 - integrated luminosity of 250 fb⁻¹ per year, about ten times present LHC
 - peak luminosity of 5 10³⁴ cm⁻²s⁻¹ with levelling (140 events per crossing!)
 - need availability and reliability!

HL-LHC ongoing studies

• 1.2 km of new equipment:

FRYAB1 P. Ferracin

new magnets (Nb₃Sn, 11-13 T) large aperture for IP quads (beta* = 15 cm) high field for dispersion suppressor dipoles

- add dispersion suppressor collimators
- additional cryogenics plants for P1, P4, P5 to have the same cooling power in all arcs
- crab cavities to profit from the small beta* despite the large crossing angle (590 urad)
 - test stand now, beam test in SPS in 2015-16
- 300-700 m super-conducting links to allow power converters to be moved to surface
 - reduce rad-risks and increase availability
- upgrade of the experiments to cope with higher pile-up density
 - ATLAS / CMS: pile-up of 140
- upgrade in the Injector Chain (LIU)
 - for brightness and reliability
 - also approved project

MOZBA1 J-B. Lallement

F. Zimmermann and many others

options for the farther future

- need to study now to have the new machine ready soon after HL-LHC
- super exploitation of CERN complex: injectors, LEP/LHC tunnel, infrastructure
- for 16-20 T magnets: HE-LHC or VHE-LHC
 - intense R&D required
- leptons? LHeC, TLEP (e+e-)

TUZAA2 A. Valloni

	LHC	HL-LHC	HE-LHC	VHE-LHC
circum. [km]	26.7	26.7	26.7	84-104
E _{cm} (TeV)	14	14	33	100
dipole field (T)	8.33	8.33	16-20	16-20
peak lum. (cm ⁻² s ⁻ ¹)	~10 ³⁴	5x10 ³⁴	5x10 ³⁴	5x10 ³⁴

conclusions

- run 1 performance beyond most optimistic expectations
 - 29 fb⁻¹ per main experiment and one new boson
- shutdown consolidation is progressing well
 - some surprises and minor delays being addressed
- a new machine will restart in 2015
 - full campaigns for hardware commissioning, cold check-out, beam commissioning, intensity ramp-up
 - parameter space constrained by pile-up limit, effectiveness of electron cloud scrubbing, UFOs, beam instabilities and their cures
- upgrades:
 - strong R&D program ongoing for HL-LHC
 - design studies ongoing for other machines

