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Introduction

1. Introduction

Recently, a concept of accelerator lattices with nonlinear trans-
verse motion possessing two analytic invariants has been proposed
[1]. Based on further studies [2], the Integrable Optics Test Accel-
erator (IOTA) was designed and is being constructed at the Fermi
National Accelerator Laboratory. Such a nonlinear lattice may be
helpful in suppression of the collective instabilities by introducing a
relatively large tune spread in a beam, while reducing phase-space
area occupied by chaotic trajectories.

[1] V. Danilov and S. Nagaitsev, “Nonlinear Accelerator Lattices with One and Two Analytic Invariants”,
Phys. Rev. ST Accel. Beams 13, 084002 (2010).
http://prst-ab.aps.org/abstract/PRSTAB/v13/i8/e084002

[2] P. Piot, V. Shiltsev, S. Nagaitsev, M. Church, P. Garbincius, S. Henderson and J. Leibfritz, “The Advanced
Superconducting Test Accelerator (ASTA) at Fermilab: A User-Driven Facility Dedicated to Accelerator Science &
Technology,”, arXiv:1304.0311 [physics.acc-ph].
http://arxiv.org/pdf/1304.0311

[3] T. Zolkin, Y. Kharkov, I. Morozov and S. Nagaitsev, “Accelerator with Transverse Motion Integrable in Normalized
Polar Coordinates”, Conf. Proc. C 1205201, 1116 (2012).
http://accelconf.web.cern.ch/accelconf/IPAC2012/papers/tueppb003.pdf

http://prst-ab.aps.org/abstract/PRSTAB/v13/i8/e084002
http://arxiv.org/pdf/1304.0311
http://accelconf.web.cern.ch/accelconf/IPAC2012/papers/tueppb003.pdf
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Introduction

Consider a 1D transverse motion in a model ring with a single thin
nonlinear lens:[

q
p

]
n+1

=

[
cos 2πν sin 2πν
− sin 2πν cos 2πν

]
×
([

q
p

]
n

+

[
0

δp(qn)

])

◦Hénon’s quadratic twist map

δp(qn) = −3εq2
n

◦McMillan map

δp(qn) = −ε aqn
1 + bq2

n

Thin nonlinear lens

Linear lattice
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The Hénon map is equivalent to 1D sextupole and is known to be
nonintegrable.

Video: Stroboscopic Poincare surface of section for Hénon’s quadratic

twist map.
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The McMillan map is integrable for ν = 0.25, but it is not easy to
generalize for 2D. rot

Video: Stroboscopic Poincare surface of section for McMillan map.
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2. Concept of Nonlinear Integrable Transverse Optics

Desired spread of frequencies can be achieved by adding to the
Hamiltonian of linear lattice an additional nonlinear potential:

K[px , pz , x , z ; s] =
∑
q=x ,z

[
p2
q

2
+ gq(s)

q2

2

]
︸ ︷︷ ︸
K0[px ,pz ,x ,z;s] — linear lattice

+ V (x , z , s) .

In general, the new equations of motion do not necessarily provide
two (and even a one) analytic invariants.
Below, we will consider one of the possible ways of how to modify a
Hamiltonian K0 preserving the integrability at the same time [1].
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First integral of motion

2.1 First integral of motion

Step 1: Lattice with linear axially symmetric focusing

The use of betatron phase advance as a new independent variable
with subsequent canonical transformation to normalized coordinates,
moves the time dependence into the nonlinear term.

[p, q; s]→ [Pq, ηq;ψ(s)]:{
ηq = q/

√
βq

Pq = pq
√
βq − q

β′
q

2β
3/2
q

,

where ′
def
= d/dψ.

2 Jη

ψ

2 J β

s

q

a.1 a.2

b.1 b.2

Figure: (a.1,2) Particle trajectory in old and new canonical variables.

(b.1,2) Trajectory in extended phase space, (p, q, s) vs. (Pq, ηq, ψ).
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First integral of motion

2.1 First integral of motion

After the transformation K[px , pz , x , z ; s]→ H[Px ,Pz , ηx , ηz ;ψ]
we have:

H[Px ,Pz , ηx , ηz ;ψ] =
∑
q=x ,z

(
P2
q + η2

q

2

)
+ β [s(ψ)] V (q(η, ψ), ψ).

Step 2: Special “time”-dependence

At least one integral of motion, the Hamiltonian by itself, can be
ensured, if the time dependence can be compensated by special
“time”-dependence of the nonlinear potential:

β [s(ψ)] V (q(η, ψ), ψ) = U(ηx , ηz) .
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Second integral of motion

2.2 Second integral of motion

For the Hamiltonian in the form

H[Px ,Pz , ηx , ηz ;ψ] =
∑
q=x ,z

(
P2
q + η2

q

2

)
+ U(ηx , ηy ),

a presence of a second integral can be guaranteed by the choice of
new generalized coordinates where variables can be separated.

Harmonic condition

Additional constraint on a potential U(ηx , ηz) to satisfies the Laplace
equation essentially reduce the number of possible choices among
the whole possible functions.
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3. Separation of Variables in Polar Coordinates

Three different families of integrable lattices were found for the
invariant in the form

W = A(x , z)P2
x + B(x , z)PxPz + C (x , z)P2

z + D(x , z).

Normalized polar coordinates (r , θ)

ηx = r cos θ,

ηz = r sin θ,

Px = pr cos θ − pθ
r

sin θ,

Pz = pr sin θ +
pθ
r

cos θ,

β(   )s

x

z

s

η

η
x

z

s
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In polar coordinates the variables separation is possible for the
potentials in the form:

U(r , θ) = f (r) +
h(θ)

r2
.

Harmonic potentials

B ln r — straight wire carrying a constant current

A sin(2θ + ϕ)/r2 — point-like magnetic quadrupole

ηx

ηz

ηx

ηz ηx ηz

0 0

Levels of

U(     ,     )

0

0 0

a. b.
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4. Transverse Motion

Finally we have a Hamiltonian

H[pr , pθ, r , θ;ψ] =
1

2

(
p2
r +

p2
θ

r2

)
+

r2

2
+

A sin(2θ + ϕ)

r2
,

with two invariants of motion:

energy

E =
p2
r + r2

2
+

W

r2

effective angular momentum

W =
p2
θ

2
+ A sin(2θ + ϕ)
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Radial motion

Radial motion

U
eff
r

p
r

r

U
eff
r

r0

p
r

r0r r

r

E

0 0
r

r

E

0

0

r

W < 0

W > 0

r

Jr (E ) =
1

2π

∮
pr dr =

E −
√

2W

2
, ωr =

∂H
∂Jr

= 2
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Angular motion

Angular motion

−2 A

2 A

A

−A

0

−π π/20−π/2 θ

U
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0

θ

W = 0
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singularity:
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Classification of trajectories

2π 2L 3L 4L

ηz

ηx

ηz

 θ+

r+ r+

r
ηx

 θ+

ηz

ηx

r+

r

a. b. c.

b.1 b.2 b.3 b.4
ω   = 2r

ψ

η
x,z

θ

ψ
4π2π

θ

θ

+
r

ψ
4π2π

r

r

r

+

0

x,z

s
4π 6LL 5L

ω   = 3.41θ

Figure: Particle trajectory in the normalized coordinates for
(a.) falling to the center (−A <W < 0) (b.) libration (0 <W < A)

(c.) rotation around the origin (W > A).
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Frequency dependence of the amplitude for the angular motion

Α

Jθ θω  (     )

J

ω

1

0

J(W = −A) J(W = 0) J(W = A)

Pendulum

ωθ =
1√
2W

(
∂Jθ
∂W

)−1

=
1√
2W
×
{

2 ωpend

ωpend
,
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5. Model Ring

Guide to the design

The absence of equilibrium orbit of motion means that under
the action of friction force particles will fall towards the singular-
ity and eventually will be lost. Thus, below we will consider the
design of an accelerator ring for protons, so far as the damping
of oscillations due to radiation effects is negligible for them.

A super-period of a lattice with axially symmetric focusing can
be realized with a drift space of length L, where the nonlinear
lens is located, and an optics insert (so-called T-insert), which
is equivalent to the thin axially symmetric lens with the focal
length equal to 1/k.
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Axially symmetric focusing

5.1 Axially symmetric focusing

IOTA ring layout

βmin ≈ 100 cm, βmax ≈ 200 cm, ν ∈ (0; 2)

1
−k

0

0 0
0

1
−k0

0
0 0

0
0

1

1

Quadrupole
Bending magnet

Nonlinearlens

T−insert

1 m

L

T−insert

1 1

maxβ    ε

s

s

L

L

2L

2L

0

0

β

ψ

s

α

L 2L
0

maxβ

β min

2πν
n

L/2γ

εγ

p

q
s=   0 s= + 0

s= L/2 0 < s < L/2

ε/γ

Figure: IOTA layout and behavior of optical functions in F
2 O F

2 lattice.
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Axially symmetric focusing

Linear Lattice Parameters
# of super-periods 4
# of nonlinear lenses 2
Circumference, Π (m) 38.7
Bending dipole field, B (T) 0.7
Drift space length, L (cm) 200
T-insert strength parameter, k (cm−1) ∈ (0; 0.02)

Beam at the Injection
Beam kinetic energy, Ekin (MeV) 1.91
Beam momentum, Peq (MeV/c) 60
Normalized emittance, ε⊥norm (cm rad) 2× 10−5

Table: IOTA ring parameters used in simulations and optimized for

compatibility with nonlinear lens under consideration.
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Nonlinear lens

5.2 Nonlinear lens parameters

The design of proposed nonlin-
ear lenses brings in two major
inevitable perturbations. They
are associated with the special
longitudinal dependence of the
field, and, the physical realiza-
tion of poles of the lens.

Rα

Ια
ρ

I    = −I    = I1,3 2,4

R    = (  b,0)1,3

R    = (0,  b)2,4

α αR   =    − Rρ
D/2

b
O

O’

ρ in

inner wall
of vacuum
chamber

As = −µ0

2π

∑
α=1,2,3,4

Iα ln |R̃α|

=
µ0I

π

(
b2 cos 2θ

ρ2
+

b6

3

cos 6θ

ρ6
+ O

[(
b

ρ

)10
])



A Model Ring With Exactly Solvable Nonlinear Motion

Model Ring

Nonlinear lens

Supercond. Water Cooling
Beam momentum
Peq, (MeV/c) 60 30
Diametr of the wire
D, (mm) 6 7
Current density
ρI , (A/mm2) 100 10
Total current
I , (A) 2827 385
Inner radius of pipe
ρin, (cm) 0.85 1
Outer radius of pipe
ρout, (cm) 4 4

Table: Parameters of the nonlinear polar lens for two different values of

current density: superconducting lens and the one with water cooling.
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6. Simulation of a Monochromatic Beam Motion

Beam motion for nonlin-
ear kick defined by the po-
tential from 4 wires moved
apart from each other.
Simulation performed us-
ing 8-th order simplectic
integrator. Linear lat-
tice unperturbed frequen-
cies νx ,z = 0.44. Video: (x , z)-plane
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Motion in a phase space

Video: (x , px)-plane Video: (z , pz)-plane
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8. Results and Conclusions

1 The first paraxial nonlinear exactly integrable system has been
studied: analytical expressions for dynamical variables change
over the time as well as amplitude dependence of frequency are
obtained.

2 The possibility to create such a nonlinear lens were demon-
strated on the example of IOTA ring for 60 MeV protons.

3 Numerical methods for the simulation of perturbed nonlinear
system were discussed (requires further study).

4 This system is of particular interest since it has an unusual
feature for accelerator physics: it has no equilibrium orbit. In
addition, this system is interesting in that it has the degeneracy.
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Thank you for your
attention.
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