

Proton-Driven Plasma Wakefield Acceleration Experiment at CERN

Patric Muggli Max Planck Institute for Physics, Munich muggli@mpp.mpg.de

For the AWAKE Collaboration

PROTON-DRIVEN PWFA

Caldwell, Nat. Phys. 5, 363, (2009)

♦Accelerate an e⁻ bunch on the wakefields of a p⁺ bunch

- Single stage, no gradient dilution
- ♦Gradient ~1 GV/m over 100's m

\diamondOperate at lower n_e, larger (λ_{pe})³, easier life ...

P. Muggli, NA-PAC'13 09/30/2013

SELF-MODULATION INSTABILITY (SMI)

Convective instability Schroeder et al., PRL 107, 145002 (2011)

Radial focusing/defocusing with longitudinal period!

Initial small transverse wakefields modulate the bunch density

SMI-PWFA SIMULATIONS

OSIRIS 2.0

Benchmarking with (for AWAKE only!):

♦ OSIRIS: R. A. Fonseca et al., Lect. Notes Comput. Sci. 2331, 342 (2002)
♦ VLPL A: Pukhov, J. Plasma Phys. 61, 425 (1999)
♦ LCODE: K. V. Lotov, Phys. Rev. ST Accel. Beams 6, 061301 (2003)

MAX-PLANCK-GESELLSCHAFT P. Muggli, NA-PAC'13 09/30/2013

PROTON BEAMS @ CERN

CNGS experimental area

- \diamond SPS beam: high energy, low σ_r^* , long β^*
- \diamond Initial goal: ~GeV gain by externally injected e⁻, in 5-10m of plasma in self-modulated p⁺ driven PWFA

 L_{p} ~10m~2 β *

Short laser pulse creates the plasma and seeds the SMI

 σ_z ~12cm >> λ_{pe} ~1.2mm (n_e~10¹⁴cm⁻³) => Self-modulation Instability (SMI)*

10⁻² 5

¹10⁵

31.8

2

0 0

10.6

21.2

Position [cm]

P. Muggli, NA-PAC'13 09/30/2013

p⁺-PWFA ACCELERATOR PHYSICS

✦Laser ionization of a metal vapor (Rb),

Max-Planck-Institut für Physi

3-4m plasma for p⁺ self-modulation only, SEEDING NECESSARY!

- ✦Helicon plasma source scales well to very long plasmas (>100m)
- Maybe able to tune plasma densities to maintain accelerating gradient

plasma source

- First p⁺-driven PWFA experiment
- ♦Take advantage of large energy (J) of p⁺ bunches; lower gradient, larger size structure approach
- \diamond Initially use self-modulation of long (~12cm) of p⁺ bunches in dense plasma (λ_{pe} ~1,2mm)
- Study physics of p⁺ bunch SMI (growth seeding, parametric dependencies, etc.)
- ♦Sample wakefields with externally "side-injected" e⁻: GeV energy gain
- ♦Accelerator experiments with on axis injection, beam loading, etc
- Many challenges (plasma, stability, injection, etc.)
- ♦Long term project: short p⁺ bunches, long plasma sources, etc.
- Collaboration formed ...
- Experiment "corridor-approved" at CERN
- ♦Experiments planned for 2016 ...

Advanced WAKefield Experiment

Proton-driven Plasma Wakefield Accelerator at CERN

Proof-of-principle experiment: accelerate in a short distance charged particles

A WAKE-

(Werner-Heisenberg-Institut)

Strathclvo

🛎 STFC

ASTe(

Science & Technology

Facilities Council

Imperial College

London

HEINRICH HEINE

- Candidate for future high energy accelerators
- Toward single-stage TeV lepton accelerator

UNIVERSITY OF

OXFORD

ΗГ

The Cockcroft Institute

MAX-PLANCK-GESELLSCHAFT

P. Muggli, NA-PAC'13 09/30/2013

THYAA2, Litos

THOCA1, Marsh MOPAC37, MOPAC38, MOPAC46, MOPAC49

MAINTAINING HIGH GRADIENT

- Peak gradient can be maintained over long distances with a plasma density step!
- Possibility for ~100GeV in ~100m?

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Lotov, Phys. Plasmas 18, 103101 (2011)

 \diamond SMI-PWFA: instability + resonantly driven

PLASMA DENSITY REQUIREMENTS

e⁻, z=1m

15 [m]

 \diamond Requirements for SMI growth rate

For a linear gradient:

Instability suppressed if:

♦ Requirements witness bunch acceleration

If λ_{pe} changes locally injected electron will be defocused

 $\frac{n_e(z)}{n_{e0}} = 1 + \frac{z}{L}$

$$\Delta \phi = \frac{2\pi\xi}{\lambda_{pe0}} \frac{1}{2} \frac{\delta n_e}{n_{e0}} < \frac{\pi}{2} \implies \frac{\delta n_e}{n_{e0}} < \frac{\lambda_{pe0}}{4\xi} \cong \frac{\lambda_{pe0}}{4\sigma_z} \cong 0.25\%$$

♦ Tight requirement!

Lotov, Phys. Plasmas 20, 013102 (2013).

n_=6x10¹⁶cm-

♦ Need to keep laser-ionized source for seeding

SMI SEEDING

♦SM Instability, grows from noise, "random"

Instabilities can be seeded by a larger-than-noise signal

♦Single, long plasma

Low energy test e⁻ injected sideways are trapped and bunched in a few wake buckets

COMPARISON +/- DRIVEN PWFA

Simulations:

J. Vieira

Comparison positively/negatively charged bunches after SMI saturation

