RHIC polarized source upgrade.

A.Zelenski, BNL

Pasadena, Sptember 30, 2013

SPIN - TRANSFER POLARIZATION IN PROTON-Rb COLLISIONS

Laser beam is a primary source of angular momentum:

10 W (795 nm) \implies 4•10¹⁹ hv/sec \implies 2 A, H⁰ equivalent intensity.

Pulsed OPPIS with the atomic hydrogen injector at INR, Moscow, 1982-1990. First generation

OPPIS with atomic H injector layout. RHIC 2012. The third generation.

"Fast Atomic Beam Source", BINP 2011

FABS 4-grid spherical Ion Optical System (IOS)

* Residual un-polarized H⁰ beam component suppression by the energy separation

G.Atoian

9/12/2013

"Electro-dynamic" valve operation principle.

Force to the conducting plate in the (high ~ 3 T) magnetic field.

$$d\vec{F_A} = I[d\vec{l}\ \vec{B}]$$

For I=100 A, L=5 cm, F=15 N).

G.Atoian

Electro-dynamic valve .

9/12/2013

"Electro-dynamic" He-gas valve.

He-ionizer cell and three-grid energy separation system.

H⁻ beam acceleration to 35 keV at the exit of Na-jet ionizer cell

H⁻ beam acceleration to 35 keV at the exit of Na-jet ionizer cell

Polarized injector, 200 MeV linac and injection lines.

Depolarization factors

$P = E_{H2} \cdot P_{Rb} \cdot S \cdot B_{RG} \cdot E_{LS} \cdot E_{ES} \cdot E_{Sona} \cdot E_{ion} \sim 85-90\%$

Depol. factor		Process	Estimate
1	E _{H2}	Dilution due H_2^+ in the new source (LEBT)	0.99 - 0.99
2	P _{Rb}	Rb-optical pumping (Laser system)	0.99 - 0.99
3	S	Rb polarization spatial distribution (Collimators)	0.97 - <mark>0.98</mark>
4	B _{RG} Proton neutralization in residual gas (Vacuum)		0.98 - <mark>0.99</mark>
5	E _{LS}	Depolarization due to spin-orbital interaction	0.98 - 0.99
6	E _{ES}	Dilution due to incomplete energy separation not polarized component of the beam (LEBT)	0.98 - <mark>0.99</mark>
7	E _{Sona}	Sona-transition efficiency (Adjustment)	0.96 - <mark>0.98</mark>
8	E _{ion}	Incomplete hyperfine interaction breaking in the ionizer magnetic field	0.98 - <mark>0.99</mark>

G.Atoian

Total: 0.85 - 0.90

9/12/2013

Polarization (at 200 MeV) vs. SCS magnetic field in He and Rb-cells

H⁻ beam current and polarization at 200 MeV vs. Rb vapor thickness

Polarization in 200 MeV polarimeter

Source intensity and polarization.

- Reliable long-term ·operation of the source was demonstrated.
- Very high suppression of un-polarized beam component was demonstrated.
- Small beam emittance (after collimation for energy separation) and high transmission to 200 MeV.

Rb-cell, Temp., deg. C	81	86	91	96
Linac Current, µA	295	370	430	570
Booster Input ×10 ¹¹	4.9	6.2	7.3	9.0
Pol. %, at 200 MeV	84	83	80.5	78

RHIC Polarized beam in Run 2012

A result of this "upgrade" is practically a new source.

- A new superconducting solenoid.
- A new atomic hydrogen injector.
- A new vacuum system.
- A new H-ionizer cell, energy separation system and pulsed PS system.
- A new control and interlock system.
- Major upgrades of laser system.
- Major modifications of the Low Energy Beam Transport system.
- Major upgrades in 200 MeV polarimeter.
- A new test-bench for atomic injector studies.
- Many other upgrades...

Summary

- The new source is working.
- Reliable long-term operation at steady current and polarization. The maintenance time is significantly reduced.
- Polarization is 80-84%, which is 3-5% higher then ECR-based source. It is expected that polarization can be further improved to over 85%.
- The source intensity is about 3-5 mA. Due to strong spacecharge effects only fraction of this current is transported and accelerated in RFQ and Linac. These losses can be reduced.

Old operational Polarized H⁻ Source at RHIC.

RHIC OPPIS produces reliably 0.5-1.0mA polarized H⁻ ion current. Polarization at 200 MeV: P = 80% Beam intensity (ion/pulse) routine operation: Source - 10^{12} H⁻/pulse - 5.1011 Linac AGS - 1.5-2.0 · 10¹¹ - 1.5.1011 RHIC (protons/bunch).

A 29.2 GHz ECR-type source is used for primary proton beam generation. The source was originally developed for dc operation. A ten-fold intensity increase was demonstrated in a pulsed operation by using a very

high-brightness Fast Atomic Beam Source instead of the ECR proton source .