

## Electron Cloud Measurements Using a Shielded Pickup in a Quadrupole at CESRTA\*

J.P. Sikora, M.G. Billing, J.V. Conway, J.A. Crittenden J.A. Lanzoni, Y. Li, (CLASSE, Cornell University, Ithaca, New York, USA)

## **October 4, 2013**





\*This work is supported by the US National Science Foundation PHY-0734867, PHY-1002467 and the US Department of Energy DE-FC02-08ER41538, DE-SC0006505.





# Shielded Pickup (SPU)

#### Shielded Pickup [SPU] Detector (Field Free)

#### Signal from Two Bunches



- Samples the flux of cloud electrons onto the vacuum surface.
- Bunches accelerate electrons into the detector.



## Quad Shielded Pickup (QSPU)



10.2 mm



## Comparison of SPU and QSPU Signals

Overlay of Signals from 10-Bunch and 20-Bunch Trains



• Train lengths: 126 & 266 ns; Turn = 2562 ns; Cloud lifetime ~100 ns

• The first 10 bunches should have the same signal, independent of train length (since the cloud is gone with the arrival of the first bunch).



## Comparison of SPU and QSPU Signals

Overlay of Signals from 10-Bunch and 20-Bunch Trains



- The same plots on different scales
- Now increase the bunch charge



## Comparison of SPU and QSPU Signals

Overlay of Signals from 10-Bunch and 20-Bunch Trains



• At higher bunch charge, the first 10 bunches are still the same in the field free detector, but very different in the QSPU.



## Comparison of SPU and QSPU Signals

Overlay of Signals from 10-Bunch and 20-Bunch Trains



- This only makes sense if some of the electron cloud persists in the quadrupole for the 2.5  $\mu s$  turn.
- 20-bunch train can access an additional reservoir of charge that remains trapped in the quadrupole from the previous turn.



## **Summary and Future Work**

- We have constructed a device to make time resolved measurements of electron cloud in a quadrupole.
- In comparing data from this detector with a similar device in a field free region, there are significant differences that indicate trapping of the cloud in the quadrupole field.
- Further experiments and simulations are needed to better understand this effect.
- Additional information including initial simulation results have been submitted to Physical Review Letters for consideration. A draft pre-print is available in the physics archive:

### arXiv.org/abs/1309.2625

arXiv:1309.2625 [physics.acc-ph]



### Thank you for your attention.

For additional information on shielded pickups, simulations and electron cloud:

• M.G. Billing, *et al.*, "Observation of Electron Cloud Trapping in a Positron Storage Ring", arXiv:1309.2625 [physics.acc-ph], 2013.

• J.A. Crittenden and J.P. Sikora, "Electron Cloud Buildup Characterization Using Shielded Pickup Measurements and Custom Modeling Code at CESRTA", in Proc. of ECLOUD'12, La Biodola, Isola d'Elba, Italy, June 5-8 2012, arXiv:1307.4013 [physics.acc-ph].

• L.F. Wang, H. Fukuma, S. Kurokawa, and K. Oide, Phys. Rev. E 66, 036502 (2002).

•J.A. Crittenden, *et al.*, "Electron Cloud Modeling Results for Time-resolved Shielded Pickup Measurements at CESRTA," in Proc. of PAC'11, New York, NY, USA, August 2011, WEP142, p.1752, (2011).

• "The CESRTA: Phase I Report," Tech. Rep. CLNS-12-2084, LEPP, Cornell University, Ithaca, NY (Jan. 2013). http://www.lns.cornell.edu/public/CLNS/2012/

•M.A. Furman and M.T.F. Pivi, "Probabilistic model for the simulation of secondary electron emission", PRST-AB 5, 124404 (2002).



#### Time-resolved EC Density Measurements

#### **Extra Slides Follow**



### **Electron Cloud Buildup**



- In an electron/positron storage ring, electron cloud is produced primarily by photo-electrons from synchrotron radiation.
- Photo-electrons produce secondary electrons.
- Additional bunches accelerate electrons that are already present, as well as producing their own photo-electrons.

\*Sketch of the electron cloud effect for the LHC by F. Ruggiero



### SPU: 2-Bunch Measurements

SPU 2-Bunch Data with Different Spacings



• An overlay of SPU 2-bunch signals with different spacings shows the decay of the cloud produced by the first bunch.



## Comparison of SPU and QSPU Signals

#### Witness Bunches After a 10-bunch Train Positrons

SPU (Field Free)

QSPU (7.4 T/m)



- Witness bunches sample the cloud left by the 10-bunch train.
- For both the SPU and QSPU, the decay time is similar.



## Aside: QSPU Witness Bunch Detail



• This detail shows that there is a delay of about 18 ns between the arrival of the bunch and the peak electron signal.



#### Secondary Electron Yield



SEY vs incident energy at normal incidence for copper (using Cu parameters for SEY model from M. Furman & M. Pivi, PR-STAB 2002)



## Quad Shielded Pickup (QSPU)





#### CESRTA Layout

#### CESRTA Storage Ring and Locations of Detectors



- The QSPU chamber is stainless steel in a quad with 7.4 T/m field.
- The SPU is in an aluminum chamber coated with TiN (field free).
- The revolution time of the stored beam is 2.562  $\mu$ s.