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Abstract
Curved magnets producing continuously rotating field

multipoles along the length of the bend can provide strong

and continuous transverse focusing, making them of in-

terest for accelerator systems such as compact ion beam

gantries and synchrotron light sources. Evaluating the util-

ity of such rotating multipole systems requires an accurate

description of field behavior for beam physics calculations.

This paper presents a helical scalar potential solution in 3D

toroidal harmonics relevant to boundary conditions on the

surface of a torus. The resulting fields are evaluated for a

curved helical quadrupole channel to illustrate field rota-

tion and the effect of magnet curvature.

INTRODUCTION
Previous analysis and use of accelerator magnets pro-

ducing helical fields have focused on straight, cylindrical

designs [1]-[5]. There is interest in studying the extension

of this concept to curved magnets [6], requiring expressions

for allowable fields rotating around the bend of torus. Pre-

vious work on field description and measurement of curved

magnets is specific to cases of axial symmetry where the

assumption of no field variation along the bend is made

[7]-[9].

In these references Schinzer et al. present a method for

finding scalar potential solutions in local polar coordinates

using approximate R-separation of the scalar Laplace equa-

tion (expansion in the aspect ratio of the torus). In this

paper a similar approach was taken to obtain expressions

relevant to rotating fields on the bend of a torus, with the

difference being the use of toroidal coordinates and full R-

separation in 3D toroidal harmonics.

TOROIDAL COORDINATES
The right hand toroidal system of η, ξ, φ is formed by

the rotation of bipolar coordinates η and ξ about the ver-

tical axis (Fig. 1). Surfaces of constant η are tori, mak-

ing toroidal coordinates a natural choice for problems with

boundary conditions on the surface of a torus. Scale factors

for this system are

hη = hξ =
a

cosh η − cos ξ

hφ =
a sinh η

cosh η − cos ξ
(1)

where (±a, 0) are foci of the bipolar system.
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Figure 1: Bipolar coordinates 0 < η < ∞ and 0 ≤ ξ ≤ 2π
forming toroidal coordinates when rotated about the z-axis.

SCALAR LAPLACIAN
In a current free region the magnetic field can be ex-

pressed using only the gradient of a scalar potential �B =
−∇ψ. The divergence of this field produces Laplace’s

equation for the scalar potential ∇ · �B = −∇2ψ = 0. In

toroidal coordinates the scalar Laplace equation is

∇2ψ =
1

hηhξhφ

[
∂

∂η

(
hξhφ

hη

∂ψ

∂η

)
+

∂

∂ξ

(
hηhφ

hξ

∂ψ

∂ξ

)

+
∂

∂φ

(
hηhξ

hφ

∂ψ

∂φ

)]
= 0. (2)

Substitution of the coordinate dependent scale factors (1)

produces

k2

a2

[
∂2ψ

∂η2
+

∂2ψ

∂ξ2
+ coth η

∂ψ

∂η

−k−1

(
sinh η

∂ψ

∂η
+ sin ξ

∂ψ

∂ξ

)
+

1

sinh2 η

∂2ψ

∂φ2

]
= 0,

(3)

where the simplification k(η, ξ) = cosh η− cos ξ is made.

The technique of R-separation is used, producing

k5/2

a2

[
∂2u

∂η2
+

∂2u

∂ξ2
+coth η

∂u

∂η
+

1

4
u+

1

sinh2 η

∂2u

∂φ2

]
(4)
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which can be separated to obtain expressions for the sub-

stituted function u = k−1/2ψ.

GENERAL HELICAL SOLUTION IN
TOROIDAL HARMONICS

With u separable in each variable u(η, ξ, φ) =
G(η)H(ξ)L(φ), sinusoidal behavior in ξ and φ is assumed

such that

L(φ) =

∞∑
m=0

[Am cos(mφ) +Bm sin(mφ)] (5)

H(ξ) =
∞∑

n=0

[Cn cos(nξ) +Dn sin(nξ)] . (6)

With these assumptions the separated “radial” equation for

G(η) can be obtained from (4) as

d2G

dη2
+ coth η

dG

dη
+

[
1

4
− n2 − m2

sinh2 η

]
G = 0. (7)

If a change of argument Z = cosh η is used, (7) can be

reformulated into the associate Legendre differential equa-

tion

(1− Z2)
d2G

dZ2
− 2Z

dG

dZ
+

[
ν (ν + 1)− m2

1− Z2

]
G = 0

(8)

with degree ν = n− 1
2 and order m. General solutions for

G(η) are the associate Legendre polynomials Pm
ν and Qm

ν

with argument Z = cosh η.

G =

∞∑
m=0

∞∑
n=0

[
En,mPm

n− 1
2
(cosh η)+Fn,mQm

n− 1
2
(cosh η)

]
(9)

Combining the solutions of separable equations and the R-

separation substitution, the general form of the helical po-

tential is

ψ = k
1
2

∞∑
m=0

∞∑
n=0

[
En,mPm

n− 1
2
(Z) + Fn,mQm

n− 1
2
(Z)

]×
[Cn cos(nξ) +Dn sin(nξ)] [Am cos(mφ) +Bm sin(mφ)]

(10)

which is in agreement with similar separable solutions of

Laplace’s equation in toroidal coordinates (see [10] for ex-

ample).

BOUNDARY CONDITIONS ON A TORUS
A surface of constant η = η0 forms a torus. If the minor

and major radius of a torus are respectively Rc and R0, the

constants producing this surface are

η0 = cosh−1 ε−1 (11)

a = Rc sinh η0 = R0(1− ε2)
1
2 , (12)

Figure 2: A partial torus of ε = 50/100 is shown with bore

cross sections at φ = 0, 2π
3 , and 4π

3 marked in red. The

rotation of transverse fields through similar cross sections

for a helical quadrupole channel is shown in Fig. 3.

where ε = Rc/R0 is the aspect ratio of the torus (Fig. 2).

The potential inside and outside the torus’ surface is given

by

ψin(η0<η<∞) = k
1
2Ain

n,mQm
n− 1

2
(cosh η) sin(nξ −mφ)

(13)

ψout(0<η<η0) = k
1
2Aout

n,mPm
n− 1

2
(cosh η) sin(nξ −mφ),

(14)

where the Legendre polynomials are required to remain fi-

nite, and phase in φ and ξ is chosen such that Bξ(η, ξ, φ =
0) is symmetric about the ξ = 0 axis.

Bore Fields
The fields inside the bore from �B = −∇ψin (13) are,

Bin
η = −Ain

a
k3/2

[(
n− 1

2

tanh η
+

k−1

2
sinh η

)
×

Qm
n−1/2(cosh η)−

m+ n− 1
2

sinh η
Qm

n−3/2(cosh η)

]
×

sin(nξ −mφ) (15)

Bin
ξ = −Ain

a
k3/2Qm

n−1/2(cosh η)

[
n cos(nξ −mφ)

+
k−1

4

[
cos((n− 1)ξ −mφ)− cos((n+ 1)ξ −mφ)

]]

(16)

Bin
φ =

mAin

a sinh η
k3/2Qm

n−1/2(cosh η) cos(nξ −mφ),

(17)

with use made of the properties of associate Legendre poly-

nomials found in [11]. For the evaluation of the Legendre

polynomials using the DTOR algorithms see [12].
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Figure 3: Transverse field rotation within a helical quadrupole channel (n = 2, m = 1) is shown for a torus of aspect ratio

ε = 50/100. The coordinate φ is the angle around the bend of the torus (see Fig. 2).

CURVED HELICAL “QUADRUPOLE”
FOCUSING CHANNELS

The n=2 toroidal multipoles resemble quadrupole fields

twisting along the length of the torus with m total rotations.

This is illustrated in Fig. 3 for a curved quadrupole chan-

nel with one full period around the torus (m=1). The as-

pect ratio ε and field period length 2πR0/m of the magnet

determine the deviation of the helical toroidal field multi-

poles from traditional cylindrical multipoles. As the aspect

ratio of the torus approaches zero and field period length

approaches infinity, the fields approach those produced by

a straight non-twisting quadrupole (see Fig. 4).

ε1 = Rc/R0 = 50/100

ε3 = Rc/R0 = 50/5000

ε2 = Rc/R0 = 50/250

Normalized vertical field

gradient along midplane

Figure 4: Axially symmetric quadrupole-like fields (n=2,

m=0) are shown for a fixed bore radius Rc and increas-

ing major radius R0. As the aspect ratio of the torus

ε = Rc/R0 tends to zero, the fields are seen approaching

those of a straight cylindrical quadrupole.

CONCLUSION
A 3D scalar potential obtained through R-separation of

Laplace’s equation in toroidal coordinates was presented.

This potential can be used to describe magnetic fields rotat-

ing helically along the length of a curved magnet in terms

of toroidal harmonics. The deviation of these toroidal har-

monics from straight cylindrical multipoles is influenced

by the period of field rotation and the aspect ratio of the

magnet (torus). This deviation tends to zero in the limit

of no rotation and a aspect ratio of zero. A curved helical

quadrupole channel was used to illustrate this behavior.
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