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Abstract 
Extending our approach recently described in [1] we 
present a new method to accurately calculate point-charge 
geometric wakefields from wake potentials due to a much 
longer bunch, typically obtained with a time-domain EM 
field solver. By allowing a relatively long bunch in the 
EM solver, this method can significantly reduce the need 
for computer resources as well as drastically shorten the 
computing time. On top of that, the method provides 
valuable physics insights. Since the method, applied to 
longitudinal wakes, was described in [1], the goal of this 
paper is to extend it to transverse wakes. 

METHOD DESCRIPTION 
Knowledge of geometric wakefields is critically 

important for studies of accelerator beam dynamics. 
While analytical solutions are known for a number of 
simple geometries, detailed wakefield calculations for 
realistic vacuum chamber components are typically done 
utilizing time domain EM solvers. They compute the 
fields due to finite length bunches, forcing one to use 
extremely fine mesh (small fraction of the bunch length) 
to compute wakes at small distances. This is where the 
longitudinal wakes are usually dominated by singularities, 
so that a wake potential due a bunch of rms length σ  
scales as 

   
W

σ (z)∝σ −q , q>0 [2,3]. Utilizing fine meshes 

has severe implications for computer memory 
requirements as well as calculation speed. Furthermore,  
EM solvers cannot calculate point-charge wakes, W

δ (z)  

and ( )W zδ
⊥ , - functions that often provide significant 

physics insights and simplify beam dynamics analysis.  
Recently we developed a method to calculate arbitrarily 

short bunch wakes, including point-charge, from the wake 
potentials due to a relatively long bunch, thus avoiding 
the fine mesh requirements in the EM solver. For 
longitudinal wakes the method is applied as follows [1]. 
1. Determine analytical singular wake model for a given 

geometry. For collimator and cavity type structures 
these are usually given by the optical and diffraction 
models respectively, see i.e. [2].  

2. Determine the length parameter λg, which is the first 
z≠0 location where W

δ (z = λg )  has a discontinuity or 

a singularity of its higher derivative with respect to z. 
The recipe is given in [1] and it is illustrated below.   

3. Pick σ0<<λg (but not too short to keep the 
computation time reasonable) and calculate the wake 

potential W
σ0 (z) with an EM solver. 

4. Subtract the singular wake model from the result: 

 D
σ0 (z) =W

σ0 (z)−W,s
σ0 (z) .   (1) 

5. Fit the remainder as follows:     

 
D

σ0 (z ≤ 3σ
0
) = α+β z

2 1+ erf( z
2σ0
)( )

+ βσ0
2π
exp(− z2

2σ0
2 )

,  (2)  

where α and β are fit parameters. Fit range used here, 
|z/σ0|≤3, works very well. However, this choice is 
rather flexible and may be influenced by practical 
trade-offs, i.e. fit quality vs. computation time. 
Maximum z, however, must obey λg-zmax>few σ0.  

6. For arbitrary short σ ≤σ0, the wake is given by: 

 
W

σ (z ≤ 3σ
0
) = α+β z

2 1+ erf( z
2σ
)( )

+ βσ

2π
exp(− z2

2σ 2
)+W,s

σ (z)
,  (3) 

 W
σ (z > 3σ 0 ) =W

σ0 (z) .   (4)  

7. Similarly, for the point-charge: 
 W

δ (z ≤ 3σ 0 ) = α +β z( )H (z)+W,sδ (z) ,    (5) 

 W
δ (z > 3σ 0 ) =W

σ0 (z) ,     (6) 

where H (z > 0) =1  is the step-function required by 
causality (z<0 is ahead of the bunch).  

Summarizing the steps above, the method basically 
states that for 0<z< λg the point-charge wakefield (with 
subtracted singular part) is a smooth, slowly varying 
function. For 0<z<< λg it is well approximated by a linear 
polynomial with coefficients easily found by fitting. 

PARAMETER λg 
λg can be determined by a straightforward geometric 

analysis combined with the causality principle [1]. Figure 
1 illustrates how to find λg for a simple axially symmetric 
cavity. In the left pipe, a bunch moving with the speed of 
light c, carries only static EM fields. As the bunch enters 
the cavity, the fields get disturbed, exciting the radiation 
of EM waves.  Some wave-fronts (i.e. red or orange) 

 

Figure 1: λg for a cavity with rmax/rmin≥2 and g/rmin≥2-1/2. 
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eventually catch up with the bunch head, thus affecting 
W

δ (z)  for all values of z. Other wave-fronts (i.e. green) 

reflect and get delayed, so they can only affect  
W

δ (z ≥ d ) , where d is the delay times c.  

Each type of reflections has two extreme values, de, of 
the delay, de=dmin and de=dmax. For instance, all the rays 
that reflect once off the 2nd cross-sectional step at r=rmin, 
are delayed between dmin=0 (orange ray) and 
dmax = (4rmin

2 + g 2 )1/2 − g  (green). In general, parameters 
dmin and dmax define the z-range where a given reflection 
type affects W

δ (z) . Thus the points z=de contain the 

discontinuities of the W
δ (z)  function or the singularities 

of its higher derivatives with respect to z. 
The parameter λg can thus be found as the minimum of 

all the non-zero de values over all the possible reflection 
types.  For the geometry of Fig. 1, the reflections off the 
2nd cross-sectional step have the minimum positive de (for 
the green ray), compared to all the other reflection types, 
so λg is given by the formula shown in the figure.   

For shallow cavities, outer-wall reflections result in yet 
smaller de>0, causing the replacement, rmin→ rmax-rmin, in 
the formula for λg. Finally, the smallest de for a short 
cavity is due to double reflections between the cavity 
side-walls, resulting in λg=2g. These three cases include 
all the possible formulas for λg for any rmax, rmin and g. 

For complex geometries the number of different 
reflection types can be large, but since λg is defined by 
the minimum delay, identifying the relevant type is 
straightforward [1]. 

EXTENTION TO TRANSVERSE WAKES 
The method above is directly applicable to transverse 

wakes except for a couple of simple changes. First, since 
these wakes are not singular, formally step 4 becomes 
obsolete. Nevertheless, if a short-bunch asymptotic wake 
model is known, subtracting it and then fitting the 

residual,D⊥

σ0 (z) , may sometimes result in a better model 
of the point-charge wake. This will be illustrated later.  

Second, the transverse counterpart of (5) should be 
generally written with an additional parameter κ,    

  
W⊥

δ (z ≤ 3σ 0 ) = κ +αz+βz2( )H (z) ,  (7) 

thus modifying  (3) and (2) to, respectively, (8) and (9): 

W⊥
σ (z ≤ 3σ

0
) = κ+αz+β ( z2+σ 2 )

2 1+ erf( z
2σ
)( )

+ (α+zβ )σ
2π

exp(− z2

2σ 2
)

,  (8) 

D⊥

σ0 (z ≤ 3σ
0
) =

κ+αz+β ( z2+σ
0
2 )

2 1+ erf( z
2σ0
)( )

+
(α+zβ )σ

0

2π
exp(− z2

2σ0
2 )

. (9) 

 Note that here, the transverse wake parameters α and β 
are different from those in the (m=0) longitudinal wake 
above. Rather, they are related to the corresponding 

parameters of the m=1 longitudinal wake. Also, in most 
cases, W⊥

δ (0) = 0   [3], so the parameter κ is often zero.  
Finally, the transverse and the longitudinal wakes for a 

given structure must have the same parameter λg.  

EXAMPLE FOR STEP-OUT GEOMETRY 
We start by analyzing longitudinal wake potentials due 

to an axially symmetric step-out structure (Fig. 2, inset). 
Three wake potentials, computed with time domain EM 
solver ECHO [4] (used through the rest of this paper), are 
plotted in Fig. 2 (top).  

As σ decreases, the wake potential inside the bunch 
attains larger negative values (W

σ (z) < 0  
corresponds to 

the energy loss of the particle with longitudinal 
coordinate z). In the limit 0σ →  this wake potential 
diverges as 1σ −  and its singular part is given by the 
optical model, see i.e. [2],   

   
W,s

σ (z) =W,opt
σ (z) = −

Z0 c
(2π )1/2π σ

ln rmax
rmin

e
− z2

2σ 2 , (10) 

   W,s
δ (z) =W,opt

δ (z) = − Z0c
π
ln
r
max
r
min
δ(z) ,  (11) 

where Z0 is the free space impedance. 
The same ECHO wake potentials with (10) subtracted, 

are plotted at the bottom of Fig. 2 (dots). Clearly at 
0σ → these curves approach a well-defined limit shown 

by the solid black line. This limit function has a 
discontinuity at z=0, and in the vicinity it can be well 
approximated by (cf.  (5) )  
D

δ (z) = α +β z( )H (z) .   (12) 

Thus, if we determine the parameters α and β, we find 
the (short-range) point-charge wakefield, which can be 
written as (5) with the singular part replaced with (11).   

For this particular geometry λg = 2rmin = 2 cm [1]. 
Following steps 3-5 above, we pick σ0=2 mm<<λg, 
calculate W

σ0 (z)  with ECHO and then determine the 

parameters α and β by fitting (2). All solid curves in Fig. 
2 (bottom) are plotted using these values of α and β.  

 

Figure 2: (inset) step-out geometry; (top) ECHO wake 
potentials;  (bottom) same with singular parts subtracted 
(dots), and (solid) wakes reconstructed from W,ECHO

2mm . 
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Specifically, the green and blue curves plot (2) with the 
shown values of σ, while the black curve for the point-
charge is the plot of  (12). At z>6 mm, all three curves 
merge together as per (4) and (6). Finally, the red curve, 
with σ =5mm>σ0, plots a (numerically performed) 

convolution of the Gaussian bunch shape with D
δ (z)  

given by the black curve.  
Figure 2 illustrates how to find the short-bunch wakes, 

including the point-charge, from EM solver results due to 
a relatively long bunch. While even for this simple case 
no analytical formula  exists for D

δ (z) , the accuracy of 

this method can be tested further by performing ECHO 
calculations with shorter and shorter bunch, and 
observing the results  converge to the black curve [1].  

Similarly, point-charge wakefield reconstruction can be 
performed for transverse wakefields, which we will now 
illustrate for the same geometry of Fig. 2.  As stated 
earlier, transverse wakes are non-singular, so step 4 could 
be skipped. Then the coefficients α, β  and κ are found by 
fitting the σ0=2 mm transverse ECHO wake with (9). 
Substituted in (7)-(8) they define the short-bunch wakes, 
including the point-charge one. At z>3σ0 these wakes are 
given by the transverse analogs of (4) and (6).   

Figure 3 shows the wake potentials found in this 
manner (solid) agreeing very well with the direct 
calculations by ECHO (dots). In addition, the point-
charge wake (black line), agrees well, near z=0, with the 
optical model, [2],  

  
W⊥,opt

δ (z) = − Z0 c
π

(rmin
−2 − rmax

−2 )H (z) .  (13) 

In fact, the fitted coefficient κ is within 2×10-4 of the 
value given by (13) (for z>0), which confirms the 
robustness of our fitting procedure.   

Of course, the point-charge wake model found by our 
method gives a much better approximation away from the 
origin, where the transverse wake significantly deviates 
from the step-function behaviour of the optical model.  

Alternatively, before the fitting, we could subtract the 
asymptotic wake due to (13), W⊥,opt

2mm (z) . This fit, with κ 

set to 0, produces very close results to the fit above, i.e. 
the fitted parameters α are within 0.5% from each other. 
Therefore, in  this  example  subtracting  the   asymptotic  

 

Figure 3: (dots) transverse ECHO wake potentials, and 
(solid) wakes reconstructed from 

  
W⊥, ECHO

2mm . 

model is optional. Sometimes, however, asymptotic 
models are known only up to a numerical coefficient. In 
such cases fitting for the parameter κ is a must. 

EXAMPLE FOR CAVITY GEOMETRY 

 

Figure 4: (inset) geometry; (dots) wakes calculated by 
ECHO and (solid) reconstructed from

  
W⊥, ECHO

1mm . 

Here we apply the method to an axially symmetric 
cavity plotted in Fig. 4. Longitudinal wake reconstruction 
for this structure was described in [1]. For this geometry 
λg≈1.24 cm (see Fig. 1). To proceed with the transverse 
wake reconstruction, we take σ0=1mm<<λg, and calculate 
W⊥,ECHO

1mm . We then subtract the short-bunch wake 

asymptotic, 1mm
,dW⊥

, given by the diffraction model, [2], 

  
W⊥,d

δ (z) = 2kd z1/2 (z > 0) ,   (14) 

  
W⊥,d

σ (z) = kdσ
−1/2 f z σ( )dz∫ ,    (15) 

where f (s) = e−s
2 /4 π

8 s (I−1/4 ( s
2

4 )+ sign(s) I1/4 ( s
2

4 )) ,   

kd = −Z0cπ
−2rmin

−3 2g , and 
1/4I± are the Bessel functions. 

Unlike the previous example, here subtracting the 
short-bunch asymptotic substantially improves the final 
wake model. Indeed, according to (14), the short-bunch 
wakes are dominated by the z1/2 term, which is fitted 
poorly by a polynomial function.  

We proceed by fitting the residual,  
  
D⊥,ECHO

σ 0 (z ≤ 3σ 0 ) ,  

to obtain the parameters α and β, and then reconstruct the 
point-charge wake, (7). With W⊥,d

δ subtracted, it is plotted 

in Fig. 4 (solid black). Figure 4 also shows that the 
reconstructed short bunch wakes (solid color) agree 
perfectly with the direct ECHO calculations (dots).  

In conclusion, we extended the point-charge wake 
reconstruction method of [1] to transverse wakes. 
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