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Abstract 
The Coherent Synchrotron Radiation (CSR) effect plays 

an important role in particle accelerators where high 
current electron beams are required, e.g., in X-ray Free 
Electron Laser. These electron beams are typically 
compressed to kA current in magnetic bends therefore 
they are subject to CSR effect. The widely used 1D CSR 
model relies on particle’s radiation field along the circular 
trajectory near its present position, i.e., Green’s function 
in 1D. We augment our previous 2D numerical CSR 
model by extending the synchrotron radiation near field 
calculation in the vertical direction. Our 3D calculation 
includes the dependence of the field on the relativistic 
beam energy through the scaled spatial variables and can 
be used to construct an efficient 3D CSR model due to the 
self-similarity of the field pattern in these variables. 

INTRODUCTION 
Coherent synchrotron radiation occurs in accelerators 

when high current beam bunches move along a circular 
beam path. It is a collective effect due to the coherence of 
the synchrotron radiation emitted by individual charge 
particle in the beam. As the radiation field on a particle is 
enhanced by the number of nearby particles if they emit 
coherently, the beam can undergo emittance growth or 
microbunching instabilities from interacting with its own 
coherent radiation. CSR is a major adverse effect on the 
performance of the FEL and has been investigated 
extensively in 1D and 2D [1-8]. As accurate 
understanding of the CSR effect requires modeling that 
accounts for the realistic beam shape and parameters, a 
3D model will be essential and valuable. Although 
various CSR models have been developed so far, the most 
efficient and widely used models are based on a 
convolution approach using the time-independent 
longitudinal synchrotron radiation near-field, i.e., the 
“Green’s function”, of a single particle. We note that this 
near-field Green’s function is relative to the present 
position of the radiating particle and in fact consists of 
both the near field and far field contributions from the 
particle at various retarded positions. Extending such CSR 
model into 3D requires an accurate description of the said 
Green’s function in 3D, which is described in detail in the 
next two sections.  

APPROXIMATE GREEN’S FUNCTION 
FOR RADIATION FIELD IN 2D   

In this section we first review the 2D CSR model 
developed in Ref. [9]. This will serves as the premise of 

the 3D model discussed in the next section.  
A diagram of the geometry is shown in Fig. 1. It is 

assumed that an electron is moving along a prescribed 
circular trajectory of radius R at constant angular velocity 
in the bending plane perpendicular to the magnetic field. 
The present and retarded positions of the particle are 
denoted as P and P’, the corresponding velocities denoted 
as   

€ 

 
β  and   

€ 

 
β ', respectively. The field point A is represented 

by its coordinates (x, α) in this 2D geometry where x is 
the radial displacement of A relative to P and α is the 
angular difference between these two points.  

The geometric relations that relate the present and 
retarded position of the particle are, 

€ 

1+ (1+ x)2 − 2(1+ x)cos(α +ψ) =ψ 2 /β 2        (1) 

€ 

1+ψ 2 /β 2 − 2(ψ /β)cosη = (1+ x)2                    (2) 

where x has been normalized to R. 
Using the Padé approximation  

€ 

cos(ζ ) ≈ (1− 5ζ 2 /12) /(1+ ζ 2 /12) 

and 

€ 

x <<1, 

€ 

α <<1, 

€ 

ψ 2 <<12 , the transcendental 
equation Eq. (1) can be approximated as, 

€ 

x 2 +α 2 + 2αψ + (x − γ−2β−2)ψ 2 −ψ 4 /12β 2 = 0       (3) 

After adopting the scaled variables 

€ 

˜ x = xγ 2, 

€ 

˜ α =αγ 3  
and 

€ 

˜ ψ =ψγ , dropping the second term 

€ 

α 2 on the left hand 
side of Eq. (3) which is only important at the opposition 

 

Figure 1: Geometry of the 2D model for calculating the 
longitudinal electric field from the synchrotron radiation 
of a particle in uniform circular motion. P and P’ are the 
present and retarded positions of the particle, respectively. 
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direction of the forward radiation cone and 

€ 

β 2 , this 
equation can be written in general form,  

€ 

˜ x 2 + 2 ˜ α ˜ ψ + ( ˜ x −1) ˜ ψ 2 − ˜ ψ 4 /12 = 0                  (4) 

Similarly, the longitudinal electric field from the 
particle’s synchrotron radiation 

€ 

Es = −∂(φ −βAs) /∂ξ , 
can be written into these scaled variables. 

Since  

 

€ 

(φ −βAs) =
eβ[1−β 2 cos(α +ψ)]

Rψ(1−β sinη)
                (5) 

one can obtain, 

€ 

(φ −βAs) ≈
eγ(1+ β sinη)

R ˜ ψ [1+ ( ˜ ψ /2 − ˜ x / ˜ ψ )2]
                (6) 

 It can be shown that 

€ 

(1+ β sinη)  weakly depends on 

€ 

γ  
in most regions at the 

€ 

( ˜ x ,  ˜ α )  plane except for the vicinity 
of the negative 

€ 

˜ α  axis where radiation is negligible. 
Therefore, 

€ 

Es ≈ γ
4F( ˜ x ,  ˜ α ,  ˜ ψ ) .                       (7) 

Here 

€ 

F( ˜ x ,  ˜ α ,  ˜ ψ ) is the functional form of the 
longitudinal electric field that only depends on 

€ 

˜ x , 

€ 

˜ α  and 

€ 

˜ ψ . We can then introduce the normalization of the 
electric field 

€ 

˜ E s = Es /(eγ 4 /R2) which reveals its 
amplitude scaling with the particle’s energy.    

Since 

€ 

˜ ψ  implicitly depends on 

€ 

˜ x , 

€ 

˜ α  from Eq. (4), Eq. 
(7) indicate that the longitudinal synchrotron radiation 
near field can be obtained, to a good approximation, from 
the invariant (with respect to γ) function 

€ 

F( ˜ x ,  ˜ α ,  ˜ ψ ( ˜ x ,  ˜ α ))  with the proper scaling of the spatial 
variables and amplitude with the particle’s energy. 

Figure 2 shows the longitudinal electric field 

€ 

˜ E s = Es /(eγ 4 /R2) as a function of 

€ 

˜ x , 

€ 

˜ α . The field’s 
amplitude is large along the four diagonal directions, 
forming a cloverleaf like pattern. While the fields quickly 
decreases along the other three diagonal directions, it 
extends to far greater distance in the top-right corner as 
shown in Fig. 2.    

 APPROXIMATE GREEN’S FUNCTION 
FOR RADIATION FIELD IN 3D   

 We are now ready to extend the above result to 3D. In 
3D, the position of field point A is denoted by its 
coordinates in the bending plane (x, α) and its vertical 
displacement y from this plane. Figure 3 shows the 
position of A and the angles it forms with respect to P’. 
   It is straightforward to show that in 3D Eq. (1) and (2) 
become,  

€ 

1+ (1+ x)2 − 2(1+ x)cos(α +ψ) =ψ 2 /β 2 − y 2 ,       (8) 

€ 

1+ (ψ 2 /β 2 − y 2) − 2 ψ 2 /β 2 − y 2 cosη = (1+ x)2,       (9) 

where y is also normalized to R.  
Since 

€ 

x 2 and 

€ 

y 2 appear together in Eq. (8) and (9), 
one can treat 

€ 

x  and 

€ 

y  similarly and define scaled 
variable

€ 

˜ y = yγ 2. With this scaled variable, Eq. (4) 
becomes, 

€ 

˜ x 2 + ˜ y 2 + 2 ˜ α ˜ ψ + ( ˜ x −1) ˜ ψ 2 − ˜ ψ 4 /12 = 0 .            (10) 

    In 3D, the unit vector 

€ 

ˆ n  is not necessarily in the 
bending plane, thus   

€ 

ˆ n ⋅
 
β '= β cosη'= β sinηcosθ . Hence, 

€ 

(φ −βAs) =
eβ[1−β 2 cos(α +ψ)]
Rψ(1−β sinηcosθ)

 .               (11) 

Next we consider the 

€ 

[1−β 2 cos(α +ψ)] term and the 

€ 

(1−β sinηcosθ)−1 term in Eq. (11) separately. It is easy 
to show,  

 

Figure 2: The general near field pattern of the longitudinal 
synchrotron radiation electric field in 2D for a particle in 
uniform circular motion. 

 

Figure 3: Schematic for the calculation in 3D. 

TUPAC18 Proceedings of PAC2013, Pasadena, CA USA

ISBN 978-3-95450-138-0

488C
op

yr
ig

ht
c ©

20
13

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s

05 Beam Dynamics and Electromagnetic Fields

D04 - High Intensity in Linear Accelerators - Incoherent Instabilities, Space ..



€ 

1−β 2 cos(α +ψ) = γ−2 1− ( ˜ x 2 + ˜ y 2)β 2γ−2 − ˜ ψ 2

2(1+ ˜ x γ−2)
' 

( 
) 

* 

+ 
, ≈ γ

−2  ,               

(12) 

    and 

€ 

(1−β sinηcosθ)−1 = (1+ β sinηcosθ)(1−β 2 sin2ηcos2θ)−1                        
(13) 

    The first term on the right hand side of Eq. (13) varies 
slowly with particle energy and is bounded, 

€ 

0 ≤ (1+ β sinηcosθ) ≤ 2 . The second term can be further 
simplified using the following relation, 

€ 

γβ cosηcosθ = γψ /2 − γβ 2(2x + x 2 + y 2) /2ψ ≈ ˜ ψ /2 − ˜ x / ˜ ψ 
                       (14) 

leading to, 

€ 

1−β 2 sin2ηcos2θ ≈ γ−2 1+ ˜ y 2 ˜ ψ 2 + ( ˜ ψ /2 − ˜ x ˜ ψ )2[ ] . (15) 

    With the above simplification, Eq. (11) reduces to a 
form akin to Eq. (6), 

€ 

(φ −βAs) ≈
eγ(1+ β sinηcosθ)

R ˜ ψ [1+ ˜ y 2 ˜ ψ 2 + ( ˜ ψ /2 − ˜ x ˜ ψ )2]
 .  (16) 

Therefore, in 3D, the functional form of Eq. (7) 
becomes  

€ 

Es ≈ γ
4G( ˜ x ,  ˜ y ,  ˜ α ,  ˜ ψ ).                      (17) 

From the Liénard-Wiechert formula, the longitudinal 
radiation field is given by, 

  

€ 

Es =
e

cρ
⋅

( ˆ n ⋅
 ˙ β ')( ˆ n ⋅ ˆ s −

 
β '⋅ˆ s ) − (ˆ s ⋅

 ˙ β ')(1− ˆ n ⋅
 
β ')

(1− ˆ n ⋅
 
β ')3

. (18) 

 After the retarded angle 

€ 

˜ ψ  is solved from Eq. (10), one 
can use the following identities,  

  

€ 

ˆ n ⋅
 
β '= β sinηcosθ,  ˆ n ⋅

 ˙ β '= (β 2c cosηcosθ) /R,
ˆ n ⋅ ˆ s = sin(α +ψ +η)cosθ

. (19) 

   Eq. (18) becomes, 

 

€ 

˜ E s =
β 3

γ 4ψ(1−β sinηcosθ)3 ⋅ [(sinη −β cosθ)

     ⋅ cos(α +ψ +η) − sin2θ sin(α +ψ +η)cosη]

.      (20) 

Figure 4 shows 

€ 

˜ E s as a function of 

€ 

˜ y  and 

€ 

˜ α  for 

€ 

˜ x = 0 . 
It should be noted that the radiation field is strongest in 

the forward direction within a ~ 45 degree cone in the 
scaled variables 

€ 

˜ y  and 

€ 

˜ α , which is consistent with the 
well-known 

€ 

1/γ  radiation cone in the un-scaled spatial 
variables. This also implies that for a beam that is 
sufficiently large in the vertical y direction, both the 1D 
and 2D models in the (

€ 

˜ x ,

€ 

˜ α ) plane will overestimate the 
longitudinal CSR force.   

Similar to our previous 2D CSR model [9], the 
calculation presented here can be done once and applied 
to a range of beam parameters. The key to such flexibility 
is the recognition of the self-similarity of the radiation 
field in three spatial dimensions through the scaled 
variables. This follows the pioneering work in one spatial 
dimension by several other authors [5,6]. However, due to 
the complex radiation field pattern in 3D, it is rather 
difficult to derive an analytic formula for such field in the 
identified scaled variables. Numerical calculation for the 
3D radiation field of a single particle is generally 
necessary and possible, as demonstrated in this paper, 
whose result can then be used to construct a 3D CSR 
model through the convolution with the beam shape.      
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Figure 4: Longitudinal radiation field pattern for a highly 
relativistic in the vertical (

€ 

˜ y , 

€ 

˜ α ) plane at 

€ 

˜ x = 0 . 

Proceedings of PAC2013, Pasadena, CA USA TUPAC18

05 Beam Dynamics and Electromagnetic Fields

D04 - High Intensity in Linear Accelerators - Incoherent Instabilities, Space ..

ISBN 978-3-95450-138-0

489 C
op

yr
ig

ht
c ©

20
13

C
C

-B
Y-

3.
0

an
d

by
th

e
re

sp
ec

tiv
e

au
th

or
s


