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Abstract
It has been observed recently that low energy electrons,

or electron clouds formed within quadrupoles can remain

trapped for time periods beyond a beam revolution period

at Cesr [1]. This paper provides some results obtained from

analysis and numerical tracking of low energy electrons

in quadrupoles under conditions similar to those when the

above mentioned data was collected.

MOTION OF PARTICLES IN A
NONUNIFORM MAGNETIC FIELD

Electron clouds generated in positively charged beams

are known to negatively interfere with the beam. Most of

the simulations done for various accelerators for estimating

the cloud buildup have been for the duration of the passage

of a single train of bunches. However if an electron remains

trapped for long enough in a magnetic structure such as a

quadrupole after the passage of a train, this trapped elec-

tron will encounter the next passage of a bunch train. The

electron may then impinge upon the walls and potentially

produce secondary electrons. Such a mechanism could lead

to a progressive enhancement in cloud densities with re-

peated train passages and can have adverse consequences

on the properties of the beam.

Trapping of electrons has been observed in the PSR [2].

In this experiment the proton beam was allowed to circulate

and produce electrons and the beam was then deflected out

of the storage ring, while the electron cloud was allowed

to evolve. It was observed that electrons in quadrupoles

persisted for a time period exceeding 50-100μs. More re-

cently, experiments performed at Cesr observed electron

trapping in quadrupoles in the presence of a beam [1]. The

revolution period of the beam in Cesr is about 2.5 μs.

In this paper, we report results obtained from single par-

ticle tracking and compare them with theoretical expecta-

tions. The parameters of our computations were similar to

those of the operating conditions when the data reported in

Ref. [1] was taken. A similar study was performed earlier

for the KEKB [3]. This study clearly showed that trapping

of electron in quadrupoles can be important and requires a

careful study.

Adiabatic Invariants
In dynamical systems exhibiting periodic motion, the

quantity
∮
p· dq, which is the phase space area encom-
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passed by the trajectory, also known as the Poincare in-

variant is a conserved quantity [4]. If a system undergoes

a very gradual change, this quantity remains conserved so

long as the relative value of this change over a full period

of motion is very small, (see for example Ref. [4]). A clas-

sic example is a simple pendulum where the length of the

string is gradually altered at a rate such that over the course

of the oscillation period, δl/l << 1. Then the quantity

E/ω remains constant and is the adiabatic invariant. The

same principal of adiabatic invariance can be applied to a

particle executing cyclotron motion in a magnetic field (see

for example Ref. [5]). For a particle in this situation, the

magnetic moment

μ = IA =
mv2⊥
2B

(1)

is conserved as long as dB/B << 1 over the cyclotron

period Tc. This is equivalent to the following condition,

|∇B|
B

rc << 1, (2)

where rc is the cyclotron radius. On the other hand, energy

which is given by

E =
1

2
m(v2⊥ + v2‖) (3)

being an absolute invariant always remains conserved. In

the above equation, v⊥ and v‖ are velocities perpendicular

and parallel with to the magnetic field, respectively.

Magnetic Mirroring

If energy and the magnetic moment are conserved, one

can obtain a formula for magnetic mirroring. As B in-

creases, v⊥ increases and v‖ decreases. If v‖ decreases to

zero, the trajectory turns around. This phenomenon is re-

ferred to magnetic mirroring. Since v⊥ is rotating around

the field line, one can associate this condition with a cone

in velocity space. A particle would lie within the “loss”

cone if

v‖/v⊥ > 1− (Bbd/Bin)
1/2. (4)

Here Bin is the magnetic field value at the initial point,

and Bbd is the magnetic field on the same field line at the

boundary of the vacuum chamber. A particle lying outside

this cone in velocity space at the given point will remain

trapped.
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Motion Transverse to Magnetic Field
Magnetic mirroring is a consequence of the effect of the

particle motion along the magnetic field lines. Addition-

ally, in the presence of a nonuniform field, the particle un-

dergoes a ”grad B” and a ”curvature drift”, which are per-

pendicular to the field lines. In the absence of any current

sources, where ∇×B = 0, the curvature of the field can be

related to its gradient, and the expressions of the two drifts

may be combined in the following form,

vcurv + v∇B =
m

q

B×∇B

|B|3 (v2‖ +
1

2
v2⊥) (5)

The values of the magnetic field here correspond to points

along the motion of the guiding center. While it is clear that

a particle can never be trapped indefinitely because of this

drift, what matters in our study is if the particle is trapped

for the period of one beam revolution. Fringe field effects

have been disregarded throughout this study, which would

become important for electrons that are either formed in

this region or drift into this region due to the effect de-

scribed above. Nevertheless, we show that for electrons

to undergo a prominent longitudinal drift, they have to ac-

quire energies close to 1 KeV, which are typically high for

electrons formed from multipacting.

RESULTS FROM TRACKING STUDIES IN
QUADRUPOLE FIELDS

In order to test the validity of the loss cone and Eq. 4, five

different initial positions were chosen. These points lay on

a horizontal line parallel to the cross-section of the beam

pipe and passing through the center of the cross-section. In

order to determine the loss cone angle for these points, one

needs to determine the field value at the given point as well

as the ”escape” point. The latter was determined with the

help of a program we developed that traced the path along

the field line. The point beyond which the particle was con-

sidered lost was located on this field line, very close to the

boundary of the chamber. The chamber shape consists of

two circular arcs (radius 0.075m) on the top and bottom,

connected with flat side planes. It is about 0.090m from

side to side and 0.050m between the apices of the arcs.

The magnetic field is given by Bx = ky and By = kx
with k = 7.4T/m, which is close to the value set during

the operation of Cesr at 5.3 GeV.

Table 1: Cases Studied to Confirm Trapping

x(m) Bin (T) Bbd θm (deg) � 1, � 2

0.0005 0.0365 0.2261 66.2989 65, 67

0.015 0.1095 0.2386 47.3414 45, 48

0.025 0.1825 0.2626 33.507 32, 34

0.035 0.2555 0.2972 21.9773 20, 23

0.04 0.2920 0.3184 16.7044 15, 17

Table 1 shows all the initial positions from where elec-

trons were tracked. The critical angle θm is equal to

90deg− (loss-cone-angle). Since the points lay on the hor-

izontal axis, the magnetic field direction for all of them

was vertical. Thus, if the particle launch angle with re-

spect to the horizontal axis was less than θm one would

expect it to be trapped. The tracking was performed us-

ing the plasma simulation program Vorpal [6]. The parti-

cles were launched at angles (with respect to the horizontal

axis) just above and below the critical angle, indicated as
� 1 and � 2 respectively. For each case, the energies used

were 1eV, 10eV, 100eV and 1 KeV. In most cases, parti-

cles that started at � 2 remained confined while those with
� 1 were lost. The only exceptions were when the particles

were at x = 0.05cm with energies 1Kev and 100eV, when

particles at both the starting angles were lost. It was also

confirmed that when particles were incrementally close to

the center, they were lost within 2.5μs even at an energy of

1eV regardless of the initial direction of motion.

For a quadrupole magnetic field, one can easily verify

that the condition of adiabatic invariance, given by Eq. (2)

becomes weaker as one approaches the center. Depending

on the particle energy, it becomes invalid at a certain point

close enough to the origin. This explains the poor con-

finement for particles that cross points close enough to the

center.
Overall, one could divide the trajectories into three

classes, (1) Those that escape because their parallel and

perpendicular velocities are distributed such that they lie

within the loss cone. (2) Particles that remain trapped be-

cause they lie outside the loss cone, and the condition for

adiabatic invariance remains satisfied. (3) Particles that

cross points sufficiently close to the center that that the

motion becomes non-adiabatic in the vicinity od the cen-

ter. As these particles move away from the center due to

inertia, they begin to move into an area of higher magnetic

field, where the motion may become adiabatic. If they are

within the loss cone, they escape. If they are outside the

loss cone, they get reflected back toward the center. De-

pending upon the phase of the cyclotron motion they ac-

quire near the center, they may stray away from the center

in an entirely different direction. This process repeats itself

until it enters the loss cone and impinges against the wall.

Figure 1 is an example of a particle that escapes because

it is within the loss cone. Figure 2 is an example of particle

that remained trapped for the period of 2.5μs because it was

located outside the loss cone. Figure 3 was a particle very

close to the center that exhibited non-adiabatic motion. The

energy in all these cases was 1 KeV.
Figure 4 shows the three dimensional motion of a

trapped particle at 1 KeV, clearly indicating the drift along

the longitudinal direction. Figure 5 is a plot of the same

z motion as a function of time. This plot compares the

motion of the full trajectory, as computed by the tracking,

the guiding center motion obtained from the tracking by

numerically averaging over the cyclotron periods, and the

motion as predicted by Eq. 5. We see that the analytic re-

sults agrees well with the numerically computed guiding

center motion. The longitudinal distance covered by the
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particle in 2.5μs was found to be about 0.34m, while the

length of the quadrupole is about 0.6m. Additionally, it is

known from build up simulations that the fractional pop-

ulation of particles with energies of 1 KeV are not more

than a few percent. Based on Eq. 5, one can state that the

distance covered by the particles is roughly proportional to

the energy (disregarding the details of the parallel vs per-

pendicular distribution of the velocities). Typical energies

of the electrons is of the order of 100eV. One can thus ar-

gue that the longitudinal drift of trapped electrons does not

contribute significantly to their escape before the arrival of

a subsequent bunch train.

Figure 1: Escaped particle lying within the loss cone.

Figure 2: Trapped particle lying outside the loss cone.

Figure 3: Particle executing non-adiabatic motion.
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Figure 4: Three dimensional motion of a trapped particle

showing longitudinal drift.
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Figure 5: Validation of the combined grad-B and curva-

ture drift, data1 is the full particle trajectory obtained from

tracking, data2 the trajectory obtained from Eq. 5, data3 the

tracked data averaged over the cyclotron motion.
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