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Abstract 
The trajectories of protons interacting through 

Coulomb forces were computed using a numerical 
integrator based on Picard’s iteration method. This is a 
variable order, adaptive integrator with dense output. We 
show different cases by varying some parameters such as 
the impact parameter, the relative velocity of the protons 
and the order of the differential algebraic (DA) vector. 
The accuracy of the trajectories was tested by changing 
the order of the DA vector while fixing the other 
parameters. The impact parameter between the protons 
and the velocity of the incident proton has the most 
impact on the trajectories. The maximum time step is 
determined by the radius of convergence of the 
expansions, while a fixed accuracy is attained by varying 
the order.  

INTRODUCTION  
Many physical phenomena involve N bodies (particles) 

interacting with one another by long range forces which 
decrease inversely as the square of the distance. Examples 
include the gravitational interaction among the stars in a 
galaxy, and the Coulomb forces between charges. Many 
particle systems have wide range of applications in 
different areas such as biophysics, chemistry, astrophysics 
[1], etc.  

This work includes the two-body problem, in which 
two charges interact through Coulomb forces. Coulomb’s 
law describes the force between two point charges by the 
following equation: � ⃗⃗  ⃗ =  ͳ4�� ݎ| ݎ ݍ ݍ | , 
where � ⃗⃗  ⃗ is the force, ݍ is the charge, ݎ  is the radial 
distance between the two charges, and �  is the 
permittivity of free space. 

It is complicated to solve the N-body problem 
numerically due to the singularity of very close 
encounters where |ݎ | → Ͳ (very strong interaction � ⃗⃗  ⃗ →  ∞), and the requirements of high precision with 
violently varying time steps that are necessary to reduce 
errors to acceptable levels.  

We consider the interaction between two protons in two 
dimensions. The first proton is initially at rest, and the 
second proton is moving horizontally towards the first 
one with a specific vertical distance between them. 
According to Coulomb’s law, the electrostatic force 
between two similar charges is repulsive. 

The integrator has applications in electron cooling of 
heavy ion beams, and any other beam dynamics problem 
where individual collisions need to be resolved. 

ALGORITHM  
To compute the trajectories of both of the protons, we 

used a code developed by us via COSY INFINITY [2].  
The code is a numerical integrator based on Picard’s 
iteration method (see [3] for details). Picard’s method 
uses the initial conditions of the system and gives a 
sequence of functions that converge to the solution. This 
method can compute completely algebraically the 
Maclaurin polynomial (Taylor series expansion of a 
function about zero).  

In this program, the Maclaurin polynomial of the 
solution is represented by DA vectors. The DA vector is 
an array of elements that describe a multi-variable 
function when given its value and derivatives at a specific 
point [4]. The integrator order is equivalent to the DA 
order, and we can vary this order to the one that we want 
to truncate the Taylor series at. At each time step, the 
program evaluates the change of the radius between the 
particles and compares it with the one at the next time 
step. Whenever the convergence radius is exceeded, the 
program will display an error message.  

The maximum velocity (βmax) used for the incident 
proton is 0.283. Different fractions of this velocity were 
used as well. The initial horizontal distance between the 
protons was varied from 10-15

-10-9 m. The impact 
parameter (vertical distance between the particles) was 
varied from 10-15

-10-11 m. It is possible to use larger 
distances (horizontal or vertical), but the strong 
interactions are localized within these distances. Hence, 
larger distances would result into very small changes in 
the positions of the protons that would be hard to see.  

EXAMPLES  
The parameters of the system will be denoted as 

follows: d = horizontal distance (m), b = vertical distance 
(m), δt = time interval (1/c s), N = number of time steps, 
and the DA order was set to be 4 unless specified 
otherwise. 

Example 1  
The impact parameter and the moving proton’s velocity 

are fixed at 10-15 m and 10% βmax, respectively. The other 
parameters are varied in two instances:   The parameters are: d = 10-15 m, N =104, δt = 3.6 × 

10-17 1/c s. The trajectories are shown in Fig. 1.  Fig. 2 shows the protons’ paths with the parameters: 
d = 10-10 m, N = 5.5 × 104, δt = 10-13 1/c s. 

The resulted trajectories in this example are as one 
would expect due to the Coulomb’s interaction. 
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Figure 1: The paths of the protons from Ex. 1 where d = 
10-15 m and the trajectories are as predicted by the 
Coulomb interaction. 

 

Figure 2: Ex. 1 paths of the protons when d is relatively 
large (10-10 m). The incident proton moves straight 
horizontally until very close to the rest proton where they 
start to interact. 

Example 2  
The horizontal distance is fixed at d = 10-12 m and the 

incident proton has high velocities in the two cases 
included here:  The parameters are: b = 10-14 m, β = βmax, N = 5 × 

104, δt = 3 ×10-16 1/c s. In this case, the rest proton 
follows a parabolic path for a very short time, and 
then moves downward (see Fig. 3). This could be a 
result of the incident proton having a very high 
velocity such that it knocks the other proton down 
while its path deviates upward. 

 

Figure 3: The rest proton moving downward when the 
moving proton has very high velocity (Ex. 2). The inset 
shows the parabolic path of the rest proton. 

 In this example: b = 10
-12

 m, β = 50% βmax, N = 7 × 

10
4, δt = 10-13

 1/c s. This is one of the cases in which 

the rest proton exhibited unexpected behavior. It 

moves downward for a very short interval, and then 

it starts to recoil and goes backward (as shown in 

Fig. 4). However, this behavior is very un-noticeable 

such that it appears like the proton is just going 

vertically down (as shown in Fig. 5). 

 

Figure 4: The path of the rest proton going backwards. In 
the small box, the first 700 steps shows the recoiling. 

 

Figure 5: The proton at rest going downward with the un-

noticeable recoiling when the moving proton has a 
relatively high velocity. 

ACCURACY TESTS  
To check the accuracy of the computed trajectories, we 

varied the order of the DA vector and the time interval in 
two ways, as described next. 

Fixing the time interval  
We used a small δt and different orders of the DA 

vector. If the trajectory of a low DA order is the same as 
the trajectory of a higher DA order, then the chosen time 
interval is sufficiently small to get accurate paths. The 
other parameters in this example are: d = 10-12 m, b = 10-

13 m, β = 10% βmax, N = 6 × 104. Fig. 6 shows this 
accuracy for δt on the order of 10-15 1/c s, in which the 
trajectory with the DA order of 4 is exactly the same as 
the one with the DA order of 20.  

Changing the time interval 
We used various time intervals with a specific order of 

the DA vector. We increased δt until the new trajectory 
diverges from the accurate one (with small δt) of the same 
order. We fixed the other parameters at: d = 10-12 m, b = 
10-13 m, β = 10% βmax. The number of time steps was 
changed according to the change of δt. 

Since the code we are using tests for errors of the radius 
of convergence, we include two cases: 
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Figure 6: The accuracy test by fixing the time interval and varying the DA order. The paths of the incident proton and 
the rest proton are illustrated in the left and right pictures, respectively. 

  δt is large, but not such that we get errors. Here are 
two examples with DA order = 4 and 20. In both 
examples, the trajectory of the moving proton was 
not affected by changing δt. Therefore, we show only 
the paths of the rest proton in Fig. 7. For DA order = 
4, the paths with large δt start to diverge from the 
ones with small δt. For DA order = 20, both paths are 
almost the same. 
 

 

Figure 7:  The paths of the rest proton with large δt (in 
blue), and with small δt (in red). The DA order is 4 in the 
top box, and 20 in the bottom one. 

 Beyond the radius of convergence errors. The 
resulted trajectories are unphysical and inaccurate. It 
is hard to explain these results, and the only reason 
might be the errors of the radius of convergence. Fig. 
8 is an example where the DA order is 18. 

SUMMARY  
Using a numerical integrator based on Picard’s iteration 

method, we computed the trajectories of two protons 
interacting through the Coulomb force. Our main interest 
was in close encounters of the protons. We showed 

different examples by changing different parameters in 
the problem. The results are in agreement with the theory: 
to obtain certain accuracy most efficiently, a maximum 
step size is determined by the region of convergence, and 
the desired accuracy is achieved by increasing the DA 
order with the given maximum time step. Also, these 
results will enable us to automatically adjust the time step 
adaptively, as needed. More studies are needed to get 
better understanding of the results.  A future work is to 
apply similar studies for the attracting case (proton-

electron interaction). 

 

Figure 8: The unphysical results from having large time 
interval such we get radius of convergence errors. 
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