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Abstract 
The Fast Multipole Method (FMM) is an accurate and 

fast way to calculate potentials/fields created by a very 
large number of particles. The runtime of the FMM is 
significantly less than that of the pairwise calculation if 
the particle number, N, is sufficiently large. Two major 
parts in the FMM are the upward pass and the downward 
pass. The upward pass calculates multipole expansions 
and then performs multipole-to-multipole translations. 
The downward pass calculates multipole-to-local 
expansions and local-to-local expansions. The multipole-
to-local translation in the downward pass is the most time 
consuming translation in the FMM. In order to make the 
FMM more efficient, we sought to minimize the time 
taken by the multipole-to-local translation. The promising 
and practical strategy to minimize the multipole-to-local 
translation time is to replace the 3D multipole-to-local 
translation with a 1D multipole-to-local translation in 
conjunction with rotations of the coordinate axes. In this 
paper we show how to perform the 1D multipole-to-local 
translation and the time comparisons between the two 
FMM variants.  

INTRODUCTION 
The traditional method to calculate the Coulomb 

interaction between charged particles is pairwise 
calculation. The computational power needed for this 
method is of the order O(N2) and it is not practical if the 
number of particles is very large. The FMM can reduce 
the computational power to O(N). 

The details of the two major components of the FMM, 
data structuring [1, 2] and calculation of the potential/field 
[3], are discussed in our previous papers. If the number of 
particle is large, the data structuring time scales linearly 
[2]. We have also shown that the total runtime, the 
addition of data structuring time and the time taken to 
calculate the potential, scales linearly with the number of 
particles, if the number is large enough [3].  

The major components of runtime with optimized 
settings are the time taken by upward pass (~3%), the 
downward pass (~50%) and the direct calculation in the 
final summation (~47%). To decrease the runtime we 
need to decrease the downward pass time or the direct 
calculation time. As the direct calculation time solely 
depends on the optimum q (the parameter q has its usual 
meaning, the maximum number of sources allowed in the 
neighbourhood of a given target), it is no longer possible 
to reduce the direct calculation time. Hence, we focus on 
reducing the downward pass time. Further analysis 
showed that the multipole-to-local translation (M2L) used 

in the downward pass is the bottleneck. This paper places 
emphasis on the M2L operator and shows that the FMM 
runtime can be significantly reduced if the 3D M2L 
translation is replaced by the 1D M2L translation. 

ALGORITHM 
In the data structuring we create the C-forest (the 

collection of trees) and the D-tree (parent-child relations 
of all boxes which contain target particles) [1, 2] at the 
optimum q. Once the octree-type data structure is created 
we can implement the FMM proper to calculate the 
potentials/fields. 

The FMM implementation consists of two key 
components, the upward pass and the downward pass [3]. 
The downward pass starts at level two and it has three 
steps. The first step is the M2L translation of the 
multipole expansions of the boxes in the interaction list of 
a particular box or leaf node, b. In the second step, we 
move to the next finer level and compute the local 
expansion of child nodes of b around their centers from 
the multipole expansions of the boxes in the interaction 
list of child nodes.  In the third step, we re-expand the 
result in the first step to evaluate the contribution from the 
local expansion of the parent box and add that to the result 
obtained in the second step. In order to complete the 
downward pass the above three steps must be repeated 
until we reach the finest level.  

After the upward pass and downward pass we move to 
the final summation [3]. In the second step of the final 
summation we calculate the potential at each target in b 
due to the sources in the neighbourhood of b. This is a 
pairwise calculation. We have noticed that the M2L 
translation in downward pass and direct calculation in 
final summation take a considerably longer amount of 
time compared to all the other operations in the FMM 
process. Since this pairwise calculation is unavoidable and 
we cannot reduce that time it becomes apparent that the 
FMM runtime can be further reduced by optimizing the 
M2L translation operator. At higher orders M2L 
translation takes more than 50% of the total FMM 
runtime. 

In this translation, we perform a 3D M2L translation in 
all three directions, x, y and z. In 3D, the number of boxes 
in the interaction list varies from 27 to 189. Therefore, the 
M2L translation takes a longer time. If we rotate the 
coordinate system of the box with  the multipole 
expansion to be translated in such a way that the z-axis of 
the box aligns with the line joining the centers of the box 
and the interaction list boxes, the 3D transformation of the 
M2L becomes a 1D transformation. Hence, the time taken 
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for M2L translation can be considerably reduced as shown 
in Table 1 and 2. 

1D M2L TRANSLATION 
There are four coordinate systems involved in changing 

3D M2L translation to 1D. 
 Original multipole expansion in (X, Y, Z)m, o 

 Rotated multipole expansion in (X, Y, Z)m, r 

 Original local expansion in (x, y, z)l, o 

 Rotated local expansion in (x, y, z)l, r , 
where the subscripts l, m, o, and r denote local, multipole, 
original, and rotated, respectively. 

The rotation about any arbitrary axis ෝ࣓  by an angle  
can be described by the matrix R, ܴ = ቌ ܥ௫ଶ߱ݐ ௫߱௬߱ݐ − ܵ߱௭ ௫߱௭߱ݐ + ܵ߱௬߱ݐ௫߱௬ + ܵ߱௭ ܥ௬ଶ߱ݐ ௬߱௭߱ݐ − ܵ߱௫߱ݐ௫߱௭ − ܵ߱௬ ௬߱௭߱ݐ + ܵ߱௫ ܥ௭ଶ߱ݐ ቍ. 
C, S and t denote cos , sin  and (1- cos ), respectively. 

In order to make a 1D translation we need to rotate the 
coordinate system of the interaction list box such that the 
z axis lies along the line joining the center of an 
interaction list box and the center of a D-tree node, which 
is denoted by r (Fig. 1). In our implementation, we avoid 
this rotation if the z axis is already aligned with r. The 
unit vector along the axis of rotation, ෝ࣓ , is then given by 
the cross product between z and r. 

 
Figure 1: Rotation of the coordinate system. 

If	࢘ = (࢘࢞, ࢘࢟, 		 ,(ࢠ࢘ ෝ࣓ 	= ࢠ and (ࢠ࣓,࣓࢟,࣓࢞) =(0,0,1), then ߱௫ = − ௥೤௥ , ߱௬ = ௥ೣ௥ ,  ߱௭ = 0. 
Once the coordinate system is rotated, we transfer the 

multipole expansion into a local expansion. Finally, this 
rotated local expansion must be rotated back to the 
original coordinate system. This process is explained 
below. 

The relationship between rotations can be given as 
follows: ൭ܼܻܺ൱௠,௥ = ܴ ൭ܼܻܺ൱௠,௢and  ቆݖݕݔቇ௟,௥ = ܴ ቆݖݕݔቇ௟,௢. 

The translation of the multipole expansion Mo to local 
expansion Lo can be expressed as a composition between 
Mo and M2L. 

Lo ቆݖݕݔቇ௟,௢= Mo M2Loቆݖݕݔቇ௟,௢. 

Since r is the distance between the centers of the boxes 
(invariant under ܴ), we can establish the following 
relationships: ଵ௥మ ൭ܼܻܺ൱௠,௢ = M2L௢ ቆݖݕݔቇ௟,௢; 

Similarly, the new operator M2Ln can be introduced as, ଵ௥మ ൭ܼܻܺ൱௠,௥ = M2L௡ ቆݖݕݔቇ௟,௥, 

where the subscript n stands for new. 
The two operators, M2Lo and M2Ln, must give the same 

local expansion around centers of the nodes. Hence, L௡ ቆݖݕݔቇ௟,௢ = L௢ ቆݖݕݔቇ௟,௢. 

By further simplification, it can be shown that L = M	 ∘ 	ܴିଵ ∘ 	M2L௢ 	∘ 	ܴ, 
where Lo = Ln = L and Mo =M. Since the rotation matrix 
is orthogonal		ܴିଵ = ்ܴ. 

PERFORMANCE ANALYSIS 
The 3D M2L translation requires a dense function 

composition operator in three variables while the 1D M2L 
translation requires a sparse function composition 
operator in the variables x and y and a dense operator in z. 
The 3D translation is computationally more expensive 
compared to the 1D translation. Both translations are 
order-dependent and hence the difference in cost between 
these translations becomes order-dependent. The two 
rotations needed for the 1D translation are considered 
order-independent overhead.  Empirically, we notice that 
the time saving by employing the 1D operator instead of 
3D operator becomes significant around order five, 
independent of the type of distribution.  Therefore, based 
on our results, it is clear that below order five 3D M2L 
translation is advantageous, while above order five 1D 
translation is advantageous, independent of the 
distribution (Figs. 2 and 3). In order to achieve high 
accuracy, it is essential to perform calculations at higher 
orders [3, 4]. 

 
Figure 2: Runtime measured for normally distributed 
particles using 1D and 3D M2L operators. 
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Figure 3: Runtime measured for uniformly distributed 
particles using 1D and 3D M2L operators. 

Tables 1 and 2 summarize the runtime measured for 
normally and uniformly distributed particles, respectively, 
at different orders at optimum q (in each case identical 
sources and targets are used). 

We studied the relationship between the FMM runtime 
(t) and the expansion order (p) in the region where the 
order is greater than five. For normally distributed 
particles (N=800k), t is proportional to the nth power of p 
and the value of n is 3.4 and 2.4 for 3D M2L and 1D 
M2L, respectively. For uniformly distributed particles 
(N=800k), the corresponding values are 7.2 and 5.5. 

Table 1: Runtime measured for normally distributed 
particles using 1D and 3D M2L operators. 

Order Time(mins) 
1D 3D 

2   8.724 7.765 
3   10.589 9.621 
4   14.155 13.314 
5   20.582 20.235 
6   28.620 31.342 
7   39.294 45.760 
8   52.292 66.442 
9   67.178 96.185 

 

Table 2: Runtime measured for uniformly distributed 
particles using 1D and 3D M2L operators. 

Order Time(mins) 
1D 3D 

2   6.800 5.886 
3   8.265 7.236 
4   11.900 10.204 
5   19.107 18.450 
6   29.732 30.752 
7   32.240 34.767 
8   36.809 43.323 
9   44.926 62.701 

 
The runtimes are machine dependent. All the tests were 

run on a single core Intel® Core™ i5-2410M @ 
(2.30GHz) computer (no SSE). The machine had 8GB of 
RAM. The code for data structuring is written in C++ and 
compiled under Cygwin on Windows 7, and used the g++ 

compiler with optimization flags –O3 and –funroll-loops. 
The FMM is implemented in COSY Infinity [4]. 

SUMMARY 
In this paper, we showed that the use of 1D M2L 

operator (for expansion orders greater than five) in the 
downward pass to calculate the potentials/fields reduces 
the overall FMM runtime in both normally and uniformly 
distributed particles. As shown in Table 3, when run at 
optimum q, 1D M2L operator saves the downward pass 
time by 40% for uniformly distributed particles and by 
35% for normally distributed particles. Hence, the overall 
FMM runtime is reduced by 30% and 29% for normal and 
uniform distributions, respectively. 

Table 3: Downward pass times at order 9 (N=800k). 

Distribution Dimension Optimum q 
Time 

(mins) 

Uniform 
1D 6000 9.40 
3D 6000 15.70 

Normal 
1D 12000 31.08 
3D 20000 47.75 
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