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Goals of this presentation

In scope

@ How to distribute a common notion of time to many nodes.
@ Usual timing performance specification methods.
@ Existing technologies for different performance goals.

’

Out of scope

@ A detailed survey of all deployed solutions.

@ How to use event systems to sequence accelerator
operation.
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Introduction

General background

@ Having many systems act in sync.

@ Providing a common notion of time to make sense of
distributed diagnostics data.

Challenges

@ Generating a very good (periodic) clock signal at the
source.

@ Evaluating transmission delay from that source to each
destination so we can account for it.
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An example application

Clocking an ADC from a recovered clock signal in a timing receiver

Clock jitter becomes amplitude noise

"""" . dv in the sampled signal, with a
3 conversion factor depending on
error signal slope.
voltage
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The imperfect sine wave

With both amplitude and phase noise
a(t)y = A(1+ «a(t)) sin(wt + ¢(t))

If we use hard-limiters, AGCs, etc.

a(t) = Asin (w (t+@))
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Phase noise Power Spectral Density (PSD)

Parseval’s theorem
J7Z et at = [ |o(f)[? dof

Truncated signal

Or(f) = J 775 wr(t)e P ot

V.

Truncated Parseval

Tf+7z-//22 (1) dt = f+00 |¢T(f)\ df
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Phase noise Power Spectral Density (PSD)

Wiener-Khintchine theorem
SI(f) = limr_yo0 T |07 (F)
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Integrating PSD: jitter
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PLL block diagram
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PLL transfer functions

Total output phase spectrum
®o(8) = H(s) - di(s) + E(S) - dn(8)

System transfer function (low pass)

KvcoKqF (s
H(s) = S+fv(cv(2207<dl(‘:()3)

N

Error transfer function (high pass)

E(s)=1-H(s) = 5+ch§KdF(S)

\
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Jitter optimization

45,0
PLL reference
locked VCO
phase-noise free-running VCO
optimized
filter bandwith
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Two-way delay compensation schemes

Master Slave
time scale time scale
b sy Cme Having the values of t;, b, t; and t,
NC meg,
oy, | the slave can calculate the one-way
" g gsage 1" link delay:
92—t ta—t)—(t3—t
D/g//g/ef/ Oms = W
t, —
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Millisecond timing
Example: Network Time Protocol (NTP)

Used in general-purpose computers

@ Works across the Internet.

@ Each client (slave) gets synchronized to one or more
servers.

v

Cannot do better than 1 ms

@ Asymmetries in network, switches and routers.

@ Non-determinism due to OS scheduler (time tags done in
SW).

@ Requires strong statistics artillery to average over many
measurements.
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Microsecond timing
Example: Precision Time Protocol (PTP, IEEE1588)

Acts on both of NTP’s shortcomings
@ Time-tagging can be done in HW.
@ Special PTP switches ensure no loss in precision.

Has a hard time doing better than 1us

@ Typical nodes use a free-running oscillator.

@ Frequency offset (and drift) compensation generates extra
traffic.
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Nanosecond and picosecond timing

Example: Synchronous Ethernet

GPS/
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clock loopback
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Nanosecond and picosecond timing

Phase tracking

Master

Link Slave
(up to 10 km single mode fiber)

reference clock - 5 uncompensated clock
0 ~ ~ — Receiver P
. R — M
-Transmltter N — - with CDR PLL
1y DMTD

DMTD-based
<" phase
detector

phase shifting
PLL
g —\_ N — " T
with CDR PLL — ~——
recovered clock

recovered in-phase clock

@ Monitor phase of bounced-back clock continuously.

@ Phase-locked loop in the slave follows the phase changes
measured by the master.
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Nanosecond and picosecond timing

Another example: neutrino oscillation experiments

g
;i
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11.4km

T32km
neutring beam ——
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Nanosecond and picosecond timing

Another example: neutrino oscillation experiments

GPS satellites

excellent long-term stability,

GPS receiver
but noisy in the short term

(28 Cesium clock
averaging

Gran Sasso

E Cesium clock | short-term stable

At < 10 ns

732 km
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Femtosecond timing

Example: Continuous Wave (CW) system

. Demodulator
Transmitter | Receiver

. Modulator Coupler
RF input P Fiber |link Frequency

O shifter
——

RF detect | RF output
and phase
correct

Optical
delay
sensing
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Conclusions

Specify well

Jitter (with PSD integration limits), UTC vs. beam-synchronous,
automatic delay compensation...

Choose well

Going from milliseconds to femtoseconds has costs (money,
complexity, reliability. .. ). Pick the technology which suits your
needs best.
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N




	Introduction
	Timing concepts
	Background on phase noise
	Background on phase-locked loops

	Timing technologies
	Millisecond timing
	Microsecond timing
	Nanosecond and picosecond timing
	Femtosecond timing

	Conclusions

