OPTIMIZATION OF MAGNET STABILITY AND ALIGNMENT FOR NSLS-II

Sushil Sharma NSLS-II (BNL)

1

Coauthors: L. Doom, A. Jain, P. Joshi, F. Lincoln, V. Ravindranath

C. Channing, T. Dilgen, R. Hubbard, W. Guo, F. Karl, B. Kosciuk, S. Kramer, S. Krinsky, O. Singh, S. Ozaki,, W. Themann, C. Yu, F. Willeke

J-R Chen (NSRRC), J. Galayda (SLAC), R. Putnam (APS), E. Swetin (APS), L. Yin (SSRF)

NSLS-II at BNL

BNL Campus

NSLS-II

Storage Ring

Experimental Hall

1st Girder Assembly

3

Outline

Introduction
NSLS-II magnet support system design
Alignment

//

Stability (vibration and thermal)

//

Conclusions

Introduction

The low-emittance lattice has stringent alignment and stability requirements. An optimum support design requires a compromise between different design features.

5

Support System Alignment Requirements

Alignment Requirements	ΔX RMS (μm)	ΔY RMS (μm)	Roll (mrad)
Magnet-to-Magnet Alignment	< 30	< 30	< 0.2
Girder-to-Girder Alignment	< 100	< 100	< 0.2

The transverse alignment requirements are difficult to meet due to:

 Stack-up of measurement and mechanical tolerances.
Alignment needs to performed in a temperature controlled environment.

Gravity deflection (~ 120 m) of the girder has a scatter of ~ 15 m.

6

Design Considerations

- "Stiff welded structures . weld distortions and stress relaxation.
- "Machined top surface for alignment . gravity deflection, stress relaxation.
- Cam movers for alignment. unpredictable vibration and thermal stability.
- Multiple supports for vibration stability. thermal stability is compromised.

NSLS-II Support System Design

8

Viscoelastic Pad Fix

Fixed Support Al

Alignment Studs

Unique Features:

- 1. Girder profiling for alignment
- 2. Viscoelastic pads for thermal stability

Girder Profiling

Alignment studs below SMR cups

SMR (Spherically Mounted Retroreflectors) cups

- Girder profiling assumes that the girder would sag and deform during transportation and storage.
- SMR cups are welded on the top surface of the girder.
- The girder is surveyed (profiled) with laser trackers.
- After transportation to the tunnel the girder profile is re-established using alignment studs.

Viscoelastic Pads

The viscoelastic film allows top plate to move relative to the bottom plate freely at slow cycles (< 0.1 Hz). The girder can expand or contract without bending.

10

The Vibrating Wire Technique

- ["] An AC current is passed through a wire stretched axially in the magnet.
- Any transverse field at the wire location exerts a periodic force on the wire, thus exciting vibrations.
- The vibrations are enhanced if the driving frequency is close to one of the resonant frequencies, giving high sensitivity.
- The vibration amplitudes are studied as a function of wire offset to determine the transverse field profile, from which the magnetic axis can be derived.

11

Magnet Alignment

Temperature-Controlled Alignment Room (± 0.05 °C)

⁷ Multipoles on a girder can be aligned to within 5 m.

12

Aligned Reference File

10 Laser Tracker positions record all girder and magnet fiducials.

13

Girder Transport Test

S. Sharma March 31, 2011

14

Verification of the Alignment and Profiling Techniques

Truck Test (Summer 2009)

"

. Prototype magnets mounted on a girder and measured, then the girder assembly was removed, driven around, and finally placed back, reprofiled and remeasured.

Alignment Errors With Respect to a Best Fit Straight Line

Jain, A. Dec. 1, 2009. Survey and Alignment Review, Magnet Alignment on a Girder+

15

Stability Requirements

Stability Requirements (Vibration and Thermal)

Requirements	ΔX RMS (nm)	ΔY RMS (nm)
Magnets (uncorrelated)	< 150	< 25
Girders (uncorrelated)	< 600	< 70

16

Ambient Ground Motion

The ambient floor motion below 4 Hz far exceeds 25 nm (rms). However, this motion is expected to be correlated due to long wavelengths of the shear waves at low frequencies.

17

Support System Design Approach

100.00 0.005 0.05 0.1 = ع 0.25 10.00 0.5 Transmissibilty 1.00 0.10 √2 0.01 2 3 0 1 4 **ω/**ωո Stiff System

Transmissibility - Sinusoidal Excitation

Support System Design Approach: resonant frequency >> 30 Hz \rightarrow the rms motion that will be amplified by the girder-magnet assembly is only ~ 1 nm.

18

Natural Frequencies and Mode Shapes

Test Data

1st natural frequency, ~ 30 Hz, corresponds to a rocking mode (magnets move in phase).

 2^{nd} natural frequency, ~ 50 Hz, is a torsional mode that causes magnetsq misalignment.

//

//

19

Vibration Amplification

The amplification factor in the horizontal direction is $1.4 \rightarrow$ magnet motion of about 20 nm (rms) << 150 nm (specification).

In the vertical direction the amplification is only 1.1 \rightarrow magnet motion of ~16 nm < 25 nm (specification).

20

Thermal Stability

Thermal stability of the support system is impacted by:

Tunnel air temperature change (± 0.1 °C, specification).

Floor expansion and contraction.

21

Tunnel Air Temperature Fluctuations

0 1 2 3 4 5 6 7 8 9 10 11 12

Temperature-Controlled Experiments

The tunnel air temperature specification is ± 0.1 °C with 1 hour cycle.

Because of thermal inertia, the girder experiences only \pm 0.01 °C temperature cycles.

The temperature-gradient fluctuations are negligible.

_

22

Experimental Verification of FEA Model- Fixed Supports

The measured absolute vertical displacement of 60-70 nm for a girder temperature change of 0.01 °C is consistent with the FEA results.

Magnet misalignment is 15 nm with fixed supports.

//

23

Air Temperature Fluctuations . Fixed Supports versus Viscoelastic Pads

Fixed Supports

Thermal bending of the girder is reduced substantially with the viscoelastic pads.

Magnetsqmisalignment is reduced from 15 nm to 4 nm.

24

Floor Expansion and Contraction

Floor expansion is tracked by a Microstrain[™] displacement sensor attached to an Invar rod.

Floor expands/contracts about ~1 m/m over 24 hour (diurnal).

25

Girder Expansion

The girder horizontal expansion is measured relative to the grouted plate for a temperature change of 0.25 °C with 1 hr time cycle.

The viscoelastic pads allow relative motion between the girder and the floor.

26

Floor Expansion . Fixed Supports versus Viscoelastic Pads

In some light-source facilities, diurnal floor expansion/contraction of $\sim 1 \text{ m/m}$ has been observed.

Bending deformations in the girder are up to 478 nm with the fixed supports, but only 7 nm with the viscoelastic pads.

27

Conclusions

The NSLS-II support system was optimized to meet the diverse requirements of magnet alignment (± 30) and magnet stability (25 nm).

The important features of the support system designs are: girder profiling, multiple support points, viscoelastic pads and vibrating wire alignment technique.

Extensive analyses and tests were performed to verify the performance of the support system.

Thank You

29

