
EXPLORATION OF PARALLEL OPTIMIZATION TECHNIQUES FOR
ACCELERATOR DESIGN∗

Y. Wang† , M. Borland, V. Sajaev, ANL, Argonne, IL 60439, USA

Abstract

Optimization through simulation is one of the most time-
consuming tasks in accelerator design, especially for high-
dimensional problems. We explored several parallel opti-
mization techniques, including parallel genetic algorithm
(PGA), parallel hybrid simplex (PHS), and parallel parti-
cle swarm optimization (PPSO), to solve some real-world
optimization problems. The serial version of the simplex
method in elegant [1] is used as a benchmark to com-
pare with the newly developed parallel optimization algo-
rithms in Pelegant [2]. Our experimental results show
almost all of the tested parallel optimization methods con-
verge to an equal or better optimization result compared
with the serial simplex method, which indicates the serial
version of the simplex method could be easily trapped to a
local optimum for some applications. The PPSO method
is reliable for global optimization and is well suited for
parallel computing. The optimization time for a coupling
minimization problem was reduced significantly from more
than six hours with serial simplex to about twenty minutes
on a BlueGene/P supercomputer at the Argonne Leader-
ship Computer Facility (ALCF). The HPS method requires
much less time than other optimization algorithms for an
experiment where the optimal solution is very close to the
initial point for the optimization. These parallel optimiza-
tion methods not only make the optimization result more
reliable but also provide a feasible approach to on-demand
accelerator optimization.

INTRODUCTION

Computational complexity is a prohibitive factor in the
optimization of some real-world accelerator design appli-
cations. We explored several optimization methods found
in the literature and integrated the parallel implementation
of the algorithms into Pelegant to find the optimal solu-
tion for some practical problems. The function evaluation
for these optimization problems is achieved through simu-
lations, and the algorithms studied do not require the prob-
lem to be differentiable. In this section, we give a brief
description of the PHS and PPSO algorithms. An exist-
ing parallel genetic algorithm library (PGAPack) was used
for the genetic optimization [3]. One strong motivation
for this work is the desire to have accelerator optimization
tools that take advantage not only of clusters, but also fu-
ture desktop computers that are expected to have a large
number of cores.

∗Work supported by the U.S. Department of Energy, Office of Sci-
ence, Office of Basic Energy Sciences, under Contract No. DE-AC02-
06CH11357.

† ywang25@aps.anl.gov

Parallel Hybrid Simplex Algorithm

While the simplex method is widely used, it can take
a very long time to find an optimal solution and may be
trapped in a local optimum for some complex problems.
We developed the PHS method to achieve a better opti-
mization result in a shorter time, combining ideas from the
traditional simplex algorithm and genetic algorithms. The
simplex algorithm is very efficient for achieving an opti-
mum by exploring in a limited region, while the genetic al-
gorithm tends to be good at finding a good global optimum.
To best take advantage of the existing simplex implementa-
tion in serial elegant, we chose to vary the step size scaled
by a uniform random number for each of the directions to
create a new starting point on each of the processors.

The algorithm in pseudo code follows:

Algorithm 1 Parallel hybrid simplex algorithm
Start with initial solution on all processors
while i < max iteration do

// For each processor, generate a mutated starting point
for d = 1 to Dimension do
stepid = r × original stepd × scale factor
xi
d = xBesti−1

d + stepid
end for
Do serial simplex optimization on every processor
Get the optimal value yBesti across all the processors
Broadcast the optimal solution vector xBesti

// to be used as the starting point of the next iteration
if yBesti < target then

break
end if

end while

In Algorithm 1, r is a random number with uniform dis-
tribution in (−0.5, 0.5). By multiplying r with the origi-
nal step size (original step) and adding the result to the
previous best solution xBest, we can generate a different
simplex starting point on each processor within one step
size (step) of the best solution. This essentially mutates
the best solution, as in a genetic algorithm. The variable
scale factor can be adjusted by the user to control the
range within which the simplexes can be generated. Af-
ter the new point is created, a simplex optimization is con-
ducted on each processor. At the end of every iteration, the
optimum across all the processors yBest is recorded and
the corresponding solution vector xBest is broadcast, to
be used as the starting point for the next iteration. The
procedure continues until either the maximal iteration is
reached or the optimal function value reaches the target.

Proceedings of 2011 Particle Accelerator Conference, New York, NY, USA TUODN2

Beam Dynamics and EM Fields

Dynamics 05: Code Development and Simulation Techniques 787 C
op

yr
ig

ht
c ○

20
11

by
PA

C
’1

1
O

C
/I

E
E

E
—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)



Parallel Particle Swarm Optimization

The particle swarm optimizer (PSO) was introduced by
Kennedy and Eberhart in 1995 [4]. It has been successfully
applied to many optimization problems in different fields.
The algorithm is based on a metaphor of social interaction.
At the start, a group of agents, called particles, are ran-
domly spread through a region. Each individual particle
stochastically moves toward the best position it has experi-
enced and the best position all the particles have reached.

Algorithm 2 Parallel swarm algorithm
// Initialize population
population size = population total/n CPUs
for i = 1 to population size do
xi = xLow + r× (xHigh− xLow)
pi = xi

end for
while k < max iteration do

// Update the best result for current iteration
for i = 1 to population size do

if f(xi
k) < f(pi

k) then
pi
k = xi

k

end if
if f(pi

k) < f(pg
k) then

pg
k = pi

k

end if
end for
pg
k ← min(pg

k) across all the CPUs
if pg

k < target then
break

end if
// Generate coordinate for next iteration
for i = 1 to population size do

vi
k+1 = wkv

i
k + c1r1(p

i
k − xi

k) + c2r2(p
g
k − xi

k)

xi
k+1 = xi

k + vi
k+1

end for
end while

In Algorithm 2, the entire population is distributed to
each of the processors evenly at the beginning. Then they
are initialized with uniform random numbers within the
range for each of the directions. xLow and xHigh are the
vectors to store the lower and upper limits of the optimiza-
tion variables. The position of the ith particle is represented
with xi. pi is the best position that the particle has experi-
enced and pg is the best position for the entire population
among all the processors. vi

k+1 is the velocity for the ith
particle in the (k + 1)th iteration, which consists of three
parts: inertia wkv

i
k , personal influence c1r1(pi

k−xi
k), and

social influence c2r2(p
g
k − xi

k). A linear reduction of iner-
tia weight [5] wk is used to allow the exploration to evolve
from a global search to a local search gradually, where wk

is wmax − (wmax − wmin) × k/max iteration for the
kth iteration. The weight is reduced from wmax = 0.9 at
the beginning to wmin = 0.2 at the end of optimization.

This parameter has improved the convergence significantly
compared with the original algorithm proposed in [4]. c1
and c2 are constants, called cognitive and social parame-
ters, respectively. r1 and r2 are random numbers with uni-
form distribution between 0 and 1. The computed velocity
is added to the particle’s current position xi

k to be evalu-
ated in the next iteration. The procedure continues until the
termination criteria are met.

APPLICATIONS AND RESULTS

One of the practical problems we studied is minimizing
the coupling of the Advanced Photon Source (APS) by ad-
justing the strength of the 19 skew quadrupoles. This can
be performed using a response matrix method and singular
value decomposition to minimize the cross-plane response
matrix and vertical dispersion. However, this method fre-
quently performs poorly when assessed in terms of the ver-
tical beam size at the source points, a result of the small
number of skew quadrupoles. Instead, we minimized the
sums of the squares of the vertical beam size at the source
points. A special requirement of this problem is that the
optimization should be completed within half an hour for
online tuning. It took more than 6 hours for the serial sim-
plex method to reach an optimum of 0.057 after 3600 func-
tion evaluations on a single AMD Opteron 2.4 GHz CPU.
To reduce the optimization time, we first tried the hybrid
simplex method, but it took more than an hour to finish one
iteration of the simplex simulation, which requires several
hundreds of function evaluations. The PSO method needs
as little as one function evaluation per processor for one
iteration, which makes the algorithm very suitable for par-
allel computing. The frequent information exchange be-
tween the agents makes the optimization result converge
much faster for this problem.

Figure 1: The results of parallel particle swarm optimiza-
tion with different numbers of CPUs and individuals.

Figure 1 shows the coupling minimization result with
different numbers of CPUs/individuals on the ALCF’s In-
trepid supercomputer. To better compare the convergence
speed for different configurations, the graph displays only
the part where the minimization value is less than 0.1. The
initial particles were distributed within the given range ran-
domly, assuming we don’t have any previous knowledge
for the location of the optimal solution. As a large CPU

TUODN2 Proceedings of 2011 Particle Accelerator Conference, New York, NY, USA

788C
op

yr
ig

ht
c ○

20
11

by
PA

C
’1

1
O

C
/I

E
E

E
—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)

Beam Dynamics and EM Fields

Dynamics 05: Code Development and Simulation Techniques



pool is available on this computer, we can set the popula-
tion size to be the same as the number of CPUs. Only one
function evaluation per iteration on a CPU is needed for all
these experiments. We find that the results with different
numbers of particles converge to a result close to the op-
timum 0.057 found with the serial optimization program.
With a larger number of individuals, the algorithm con-
verges faster to the optimal value. The total time is roughly
in portion to the number of iterations, or the number of
function evalutions per CPU. It took about 28 minutes to
finish 50 iterations with 4096 individuals on 1024 compute
nodes (4096 cores), which is one rack of the total 40 racks
of the supercomputer. With 4096 compute nodes (16384
cores), it took about 20 minutes to finish 30 iterations to
reach the same result. More than 8k nodes doesn’t give
faster convergence for this problem. Using 4k individuals
on 1k compute nodes appears to be an efficient choice.

Another application is to optimize the Twiss parameters
for a complex configuration of the APS, using 38 indepen-
dent quadrupoles. The challenge of this problem is not only
the high dimension, but also that it requires very fine tun-
ing around a very small neighborhood to reach the target
value, which is set to be 1 for this optimization problem.
All three parallel optimization implementations were tested
with 1k compute nodes (4k cores) on Intrepid. The sizes of
the populations are the same as the number of CPU cores,
so only one function evaluation per iteration on each CPU
is needed for the parallel particle swarm optimization and
genetic algorithm. We can use the number of function eval-
uations to decide which algorithm is most efficient for this
problem.

Figure 2: The Twiss parameter minimization problem with
different algorithms.

Figure 2 shows the optimized function value versus the
number of function evaluations per processor. It took more
than 6 hours for the serial version to reach 4.27 after 264k
function evaluations on a computer with an Intel Xeon 2.3
GHz CPU. Both the parallel genetic optimization and par-
ticle swarm optimization failed to reach the target value af-
ter thousands of evaluations. The parallel hybrid simplex
method converged to the target optimum after 7.5k function
evaluations, which took about 1.5 hours with 4k Intrepid
cores. The optimal function value for the hybrid simplex

method was recorded after every simplex call, which had
about 750 function evaluations for this experiment. The
optimal solution turns out to be very close to the given start-
ing point, which indicates that an efficient search in a local
neighborhood is the key to reaching the target value for this
problem. (A successful application of the PGA algorithm
is shown in [6].)

CONCLUSION

At present, computer manufacturers seek to increase
computer performance by adding more cores instead of in-
creasing processor speed. The traditional, serial optimiza-
tion techniques used by accelerator design programs will be
unable to take advantage of this. Hence, we implemented
several parallel optimization algorithms and applied them
to some practical accelerator design problems. It is not
easy to find a single algorithm for all problems. The par-
allel particle swarm optimization and parallel genetic opti-
mization have the advantage in global optimization where
no previous information of the optimum is required. They
also require a very few number of function evaluations be-
fore all the processors exchange their best result to get the
optimal result faster. Applying adaptive step-size control
for each of the dimensions would improve the performance
of the parallel genetic optimization. The hybrid simplex
algorithm takes advantage of both the local optimization
ability of the simplex optimization and the mutation tech-
nique from the genetic optimization. It is good for the ap-
plications, which only need some fine tuning, but it cannot
meet the on-demand adjustment requirements because of
the large number of function evaluations. The parallelized
simplex algorithm in [7] could be used to reduce the opti-
mization time in the future.

ACKNOWLEDGMENTS

This research used resources of the Argonne Leadership
Computing Facility at Argonne National Laboratory, which
is supported by the Office of Science of the U.S. Depart-
ment of Energy under contract DE-AC02-06CH11357.

REFERENCES

[1] M. Borland, Advanced Photon Source Light Source note
LS-287, Sept. 2000.

[2] Y. Wang et al., Proc. ICAP09, p. 355 (2009).

[3] D. Levine, ANL Report ANL-95/18 (1996).

[4] J. Kennedy and R. C. Eberhart, Proc. of IEEE International
Conference on Neural Networks, p. 1942 (1995).

[5] Y. Shi and R. C. Eberhart, Proc. of IEEE International Con-
ference on Evolutionary Computation, p. 69 (1998).

[6] C. Wang et al., Proc. IPAC10, p. 4605 (2010).

[7] H. Shang et al., Proc. PAC05, p. 4230 (2005).

Proceedings of 2011 Particle Accelerator Conference, New York, NY, USA TUODN2

Beam Dynamics and EM Fields

Dynamics 05: Code Development and Simulation Techniques 789 C
op

yr
ig

ht
c ○

20
11

by
PA

C
’1

1
O

C
/I

E
E

E
—

cc
C

re
at

iv
e

C
om

m
on

sA
tt

ri
bu

tio
n

3.
0

(C
C

B
Y

3.
0)


