

Time evolution of beam intensity from ECRIS

Structure of the ECR ion sources (1970~2009)

Key words

ECR ion sources

: Brief History and Look into the next generation

T. Nakagawa (Nishina center, RIKEN)

1. Physics of ECR plasma

Effect of key components on the ECR plasma and beam intensity

2. Technology of the ECR ion sources

Permanent magnet super-conducting magnet Example of most advanced ECR ion sources

3. Next generation

Super-conducting ECR ion source (>28GHz) New type ECRIS

Magnetic field configuration I (B_{min} effect)

Energy absorption as a function of B_{min}

Magnetic field configuration II (Mirror ratio)

Gas pressure effect

Scenario to increase the beam intensity

Frequency effect

q: charge state L: chamber length

> Chamber size (quadrumafios) 10times larger than caprice

Technology of the ECR ion source

Permanent magnet technology

All permanent magnet ECR ion source

All permanent magnet ECR ion source (LAPECRIS2)

Table 2 Typical performances of LAPECR2 in comparison with LECR2

Ion	LAPECR2 (eµA)			LECR2 (eµA)
O^{6+}	1000	1.0 kW	24 kV	610
O ⁷⁺	130	1.0 k W	24 kV	140
Ar ⁸⁺	460	0.9 kW	24 kV	460
Ar ⁹⁺	355	0.9 kW	24 kV	_
Ar^{11+}	166	1.08 kW	25 kV	185
Ar ¹²⁺	62	1.08 kW	25 kV	105
Ar^{14+}	16.7	1.05 kW	23 kV	12
Ar ¹⁶⁺	2	1.0 kW	25 kV	_
Ar ¹⁷⁺	0.33	1.08 kW	23 kV	_
Xe ²⁰⁺	85	1.0 kW	23 kV	_
Xe ²⁶⁺	40	1.05 kW	24 kV	50
Xe ²⁷⁺	24	1.05 kW	24 kV	25
Xe ³⁰⁺	5.3	1.05 kW	24 kV	_
Xe ³¹⁺	2	1.05 kW	24 kV	_

Heavy ion accelerator facility

Advanced ECR ion source I (VENUS)

B _{ini} /B _{ecr}	~ 4
B _{ext} /B _{ecr}	~ 2
B_{min}/B_{ecr}	~ 0.5 to 0.8
B _{rad} /B _{ecr}	≥ 2
B _{ext} / B _{rad}	\leq 0.9 to 1

		VENUS				
f(GHz)	28 or18 +28					
¹⁶ O	6	2850 ¹²⁹ X	e 28 ⁻	222		
	7^{-}	850	2 9 [°]	168		
⁴⁰ Ar	12	860	30-	116		
	14	514	31	86		
	16	270	34	41		
	17	36	37	12		
	18	1	38-	7		
			42 ⁻	.4		
²³⁸ U	33-	205				
	34	202				
	35-	175				
	47	5				
	50-	1.9				

Advanced ECR ion source II(SECRAL)

RIKEN 28GHz ECR ion source

Structure of SC-Coils

 I_c performance of the conductor with a rectangular shape and the load points for the solenoid SL1 and sextupole magnet.

The longitudinal distributions of the magnetic force acting on the straight region of the hexapole coils.

Rev. Sci. Instrum. 79(2008)033302 D. Leitner et al,

2 GM-JT refrigerator is installed for Cooling the SC-Coils of RIKEN SC-ECRIS

Next generation (requirements)

New ECR ion source

Required beam intensity from ion source

 ${}^{6}\text{He}=2 \ 10^{13}$ atoms per second ${}^{18}\text{Ne}=8 \ 10^{11}$ atoms per second

High ionization efficiency

New 60GHz ECRIS

Next generation (Superconducting magnet technology)

36GHz ECRIS

Next generation (Heat load from X-ray)

$\sum_{C \in N} \frac{|A| | |K| | |K|$

Next generation (Plasma instability)

Beam from ECRIS

Next generation (New type ECRIS)

