

... for a brighter future

U.S. Department of Energy

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

Recent Developments in Low and Medium Beta SRF Cavities (TU3RAI02)

PAC 2009 May 4-8, 2009 Vancouver, British Columbia Canada

Speaker: Mike Kelly

Outline

- I. Background
- I. Applications
- **III.** Recent Developments
- **IV.** Coupler, Tuners

THANK YOU

Bob Wagner (FNAL) Yvgeny Zaplatine (Julich) Walter Hartung (MSU) Bob Laxdal (Triumf)

Location		Cavity Type		Frequency (MHz)		Beta (v/c)		# Cavities		
Spiral-2/Ganil		QWR			88		0.07,0.12		26	
MSU FRIB	MSU I	Re-Acc	QV	V R		80.5	0.0	4, 0.085		112
CERN		QWR		101		0.76, 0.12			30	
Triumf		QWR		80		0.06-0.07			20	
New Delhi		QWR		97		0.08			14	
Canberra		Split-ring, QWR		150.4		0.09-0.11			14	
INFN Legnaro		QWR		80, 160		0.05-0.13			74	
Kansas State		Split-ring		96, 97		0.06-0.1			14	
JAERI		QWR		130, 260		0.1			46	
U. Washington		QWR		150		0.1-0.2			36	
Florida State		Split-ring		97		0.07-0.1			15	
Stony Brook		Split-ring, QWR		150.4		0.07-0.1			40	
Argonne		Split-ring, QWR		48, 72, 97		0.01-0.10			64	
Oper Upe		ations & grades	Under constructior		Planned		No longer operating			

II. Applications: SC Quarter-wave Cavity Linacs

II. Applications: SC HWR and Spoke Cavity Linacs

		,			
IFMIF 175 (HWR)		0.094. 0.17	Deuteron	42	CW
ESS	352 (Spoke)	0.35, 0.59	Proton	Up to 126	Pulsed
Eurisol	176, 352 0.09-0.3		Proton, Light ion	108	CW
Project X	325 (Spoke)	0.2-0.6	Proton	93 (445)	Pulsed
MSU FRIB	FRIB 322 (HWR)		Proton to Heavy-lon	224 (336)	CW
SARAF	176 (HWR)	0.09, 0.15	Proton, Deuteron	42	CW
Applications	Frequency (MHz)	Beta (v/c)	Particle type	# of Spoke or HWR Cavities (total cavities)	Duty Factor

Under	Planned	Under		
construction	Fiaimeu	consideration		

TU4PBC04, WE5PFP052

II. Applications: Triumf

 Today's state-of-the-art for operational low beta linacs

Geometry based on that from INFN Legnaro

•5 cryostats of 20 cavities at β =0.057, 0.071 providing 20 MV accelerating potential

•Fabricating an additional 20 cavities at β =0.11 to provide another 20 MV

•Triumf working with new cavity vendor PAVAC for fabrication of β =0.11 cavities (6 delivered, 6 to ship soon, 8 in fabrication)

II. Applications: IUAC New Delhi

•In operations one cryostat with eight 97 MHz cavities for β =0.08

 In fabrication an additional 2 cryostats with 16 new cavities

 IUAC has full local cavity fabrication capability (niobium forming, welding, chemistry)

Performing SRF work for others (FNAL single spoke)

97 MHz β =0.08

II. Applications: Argonne

•New cryomodule with seven β =0.15 109 MHz quarter-wave cavities (ANL, Sciaky and AES)

 Offline testing of cavities, subsystems April-May '09; operations in June '09

 Based on a cavity string and couplers assembled and sealed in the clean room

 Goal is (at least) 2+ MV/cavity (15 MV total with the seven installed cavities in a 4.65 meter module)

II. Applications: Spiral-2

Short cryostats with one or two cavities per module

 Total of 26 cavities to provide 40 MV accelerating potential

Separate cavity and cryogenic vacuum systems

 β =0.12 quarter-wave cryomodule

MO3GRI03 FR5REP073, WE5PFP039

II. Applications: MSU FRIB & Re-accelerator

•80 MHz quarter-wave resonators β = 0.041 and β = 0.085 for re-accelerator & FRIB •322 MHz half-wave resonators β = 0.285 and β = 0.53 for FRIB

II. Applications: SARAF

Prototype superconducting module with separate cavity and cryogenic vacuum. Fabrication by ACCEL

•Prototype superconducting module containing 6 HWR β =0.09

- •World's 1^{st} halfwave ($\lambda/2$) SC cavity linac
- Cavity choice driven at the time by good beam dynamics properties (small beam steering)
- Goal 0.86 MV/cavity (Epeak=25 MV/m) @ 10 W into 4 Kelvin
- Additional 5 cryostats with 40 resonators planned

II. Applications: ANL Proposal for Future Application

TU5PFP060

III. Recent Developments: FNAL Single Spoke Cavity for HINS

•Most important experimental result (this speaker's words) for low- β since HPR and clean techniques first used with these cavities about 10 years ago

 Highly optimized shape + no large defects gives ~double performance relative to other cavities at this beta (fabrication at Roark)

Comparable voltage/length as for high beta; 4.5 MV acc. voltage in 1/3 meter long cavity!

III. Recent Developments: Optimization of 48 MHz β =0.025

- •Fields distribution more uniformly in order to low peak fields
- •Optimized shapes with good EM properties are possible for "complicated" lower beta cavities
- •With 3D design tools and today's fabrication techniques no need to continue design/build cavities with high surface fields Phys. Rev. ST Accel. Beams 11, 032001 (2008)

III. Recent Developments: Optimizing B_{PEAK}

Quarter-Wave \rightarrow *diamond Spoke-cavities* \rightarrow *points E-cell cavities* \rightarrow *solid lines*

III. Recent Developments: Optimizing E_{PEAK}

Quarter-Wave \rightarrow *diamond Spoke-cavities* \rightarrow *points E-cell cavities* \rightarrow *solid lines*

•CW applications using low- and mid- β cavities should strongly consider 2 Kelvin operation •Savings in refrigerator capital and operating costs greater 2-3X possible for f~350 MHz

IV. Couplers, Tuners

Couplers and tuners are opportunity for creativity; also source of headaches
(1) Provide ample, not just adequate capability; (2) Don't sacrifice cavity performance

	Туре	Comments		
Couplers	Capacitive	simplicity \uparrow , better suited for $\lambda/4$?		
	Inductive	cooled center conductor; better for $\lambda/2$?		
	Fixed	simplicity ↑, cost ↓		
	Variable	rf power needs ↓, easier conditioning		
	Pneumatic bellows	moving parts ↓		
Slow Tupor	Lever/motor + tuning plate	size ↑, serviceability ↑		
Slow Turler	Cold motor driven lever	size ↓		
	Niobium plunger	Penetration into rf space		
Fast Tuner	None/overcoupling	parts count ↓, rf power needs ↑		
	Mechanical	development required		
	Variable reactance	cost ↓, limited applicability		

WE5PFP029

 IPN fixed cw capacitive power coupler designed for 5 kW; extended to 20 kW for 352 MHz spoke cavity

- ANL inductive and capacitive power couplers
- Fully variable over 50 dB (tested CW up to ~800 W)

IV. Couplers, Tuners: VCX Fast Tuner at Argonne

Based on a set of 10 parallel 77 K PIN diodes

 Coupled directly to the cavity fields through an inductive loop mounted on a cavity coupling port

 Diodes are switched on and off; switching the cavity between two frequency states in order to adjust cavity phase

Reliable, inexpensive

•Only developed for f<150 MHz; limited switching power; a fast mechanical tuner is desired for future ATLAS upgrades

IV. Couplers, Tuners: "Slow" Tuner at Triumf

External motor drive

- Precision servo-motor and ball screw on top of cryomodule
- Actuator extends (through bellows) to a lever mechanism to the tuning plate
- Relatively fast response time, up to 30 Hz
- Tuner sensitivity 0.04 Hz/step; corresponds to 5nm/step
- Tuner accurately tracks induced helium pressure fluctuations (lower right)

IV. Couplers, Tuners: Slow Tuners for Spiral-2

- High RRR 3 cm niobium plunger into the cavity rf space
- 1100 Hz/mm tuning sensitivity; large 90 kHz tuning window
- 11% additional rf loss at 6.5 MV/m; mostly on SS flange and bellows

IV. Couplers, Tuners: Fast and Slow Tuner Planned for MSU Re-accelerator

Niobium push-pull tuning plate with convolutions and cuts

Based on a warm linear stepper motor plus piezo electric stack

•Force applied through to a tuning rod to a tuning plate on the bottom of the cavity

~20 kHz tuning range (+/- 25 mm) using stepper; 300 Hz full range with piezo

IV. Couplers, Tuners: New/prototype Fast Tuners

Piezo fast tuner – ANL

No fast mechanical tuners of these types in routine operation with low-, mid-beta SRF linacs

Outlook for Low and Mid Beta Superconducting Cavities

- There are many well developed SRF structures covering the low and medium velocity range so that together with elliptical cell cavities established solutions are available for the entire velocity range
- Several new projects underway using 0.1<β<0.2 SRF cavities using many established solutions (cavity geometries, techniques, tuners)</p>
- Low and medium beta linac projects have been slow to adopt new techniques and solutions (some of these to be had at little or no additional cost/risk)
- Many areas where majors gains still to be had with modest R&D
 - Gradient/linac size
 - Refrigeration costs
 - RF power
- Realization of these gains will drive interest in future applications of low and medium velocity SRF cavities

