

FERMI NATIONAL ACCELERATOR LABORATORY

US DEPARTMENT OF ENERGY

Circularly Inclined Solenoid Channel for 6D Ionization Cooling of Muons

Y.Alexahin

Particle Accelerator Conference, Vancouver, Canada

May 4-8, 2009

Ionization Cooling Basics

There is no longitudinal cooling in the most suitable range 2-300MeV/c.

With higher momentum p > 300MeV/c it is difficult to obtain small β -function which is necessary for small equilibrium emittance:

$$\frac{\mathrm{d}\varepsilon_{\mathrm{N}}}{\mathrm{d}s} = -\frac{1}{\beta^{2}\mathrm{E}}\frac{\mathrm{d}\mathrm{E}}{\mathrm{d}s}\varepsilon_{\mathrm{N}} + \frac{\beta\gamma}{2}\frac{\beta_{\perp}}{2}\frac{\mathrm{d}\left\langle\theta_{\mathrm{rms}}^{2}\right\rangle}{\mathrm{d}s}$$

6D Cooling of Muons - Y.Alexahin

PAC09 Vancouver, May 5 2009

Damping Re-partition for Longitudinal Cooling

Dispersion and/or large positive momentum compaction \Rightarrow higher momentum muons make longer path in the absorber \Rightarrow lose more energy \Rightarrow longitudinal cooling

6D Cooling Schemes

RFOFO ring

Helical Cooling Channel

"Guggenheimed"

"Guggenheim" : too long \Rightarrow muon decay; problem with RF in magnetic field.

HCC: no viable solution yet for RF inside coils.

Both channels are selective to muon sign, it is either $\mu +$ or $\mu -$

Alternating solenoid focusing

- necessary for damping both transverse modes in ~ straight channel

Resonance dispersion generation:

resonant dependence of the periodic orbit on the tune, $x_{p.o.} \sim 1/\sin \pi Q_x$, + large chromaticity \Rightarrow

$$D_x = \frac{dx_{p.o.}}{d\delta_p} = -\pi Q'_x x_{p.o.} \cot(\pi Q_x)$$

Naturally $Q'_x < 0 \implies D_x \cdot x_{p.o.} > 0 \implies$ positive momentum compaction

Challenges

The initial proposal - planar snake - reported at PAC07. Further analysis revealed certain difficulties:

Insufficient transverse dynamic aperture

$$\frac{\partial B_z}{\partial z} \Rightarrow \frac{\partial B_r}{\partial r}, \quad \frac{\partial^2 B_z}{\partial z^2} \Rightarrow \frac{\partial^2 B_z}{\partial r^2}, \quad \frac{\partial^3 B_z}{\partial z^3} \Rightarrow \frac{\partial^3 B_r}{\partial r^3} \quad etc. \qquad \Rightarrow \text{strong aberrations}$$

Cures:

- increase number of cells per period $4 \rightarrow 6$ (smaller phase advance per cell)

- increase solenoid radius (smoother Bz)

This helped, but brought about another problem:

Unequal damping rates of transverse modes

Cure: mix the transverse modes better by

- adding a constant magnetic field component (R.Palmer)
- making the snake helical (the subject of this report)

Basic Idea of Helical FOFO snake

- Choose phase advance/period (6-cell period here) > $2\pi \times \text{integer to obtain } \alpha_p > 0$
- Create rotating B_{\perp} field by tilting (or displacing) solenoids in rotating planes

 $x^{*}\cos(\phi_{k})+y^{*}\sin(\phi_{k})=0, k=1,2,...$

Example for 6-cell period:

Solenoid #		. 1	2	3	4	5	6
Polarity		+	-	+	-	+	-
Roll angle	ϕ_k	0	2π/3	4 π/3	0	2 π/3	4 π/3

Channel parameters:

200 MHz pillbox RF 2x36cm, Emax=16MV/m

Solenoids: L=24cm, Rin=60cm, Rout=92cm,

Absorbers: LH2, total width (on-axis) 6x15cm,

Total length of 6-cell period 6.12m

6D Cooling of Muons - Y.Alexahin

PAC09 Vancouver, May 5 2009

Why double cavities?

"Poor man" magnetic insulation for Ncavities ≤ 2 Length of 1 cavity is not enough for cooling rate

Periodic Helical Orbits

6D Cooling of Muons - Y.Alexahin

PAC09 Vancouver, May 5 2009

Beta-functions & tunes

at the absorber locations

- $<\beta>$ ~ 70cm
- compare with MICE's

 $<\beta>\sim45$ cm

The best results with 7mrad pitch angle, no absorber wedge angle:

mode	I	II	
tune	1.239+0.012i	1.279+0.007i	0.181+0.002i
ε _eq (mm)	3.2	4.5	6.9

ImQ=0.007 \Rightarrow cooling rate d log ε / dz = 2×2 π /L ImQ = 1/70m There is difficulty in equalization of damping rates of the transverse modes Bmax=2.3T \Rightarrow j=58A/mm², Itot=4.4MA/solenoid

Parameter Scan

Damping rate ratios $R_{ik}=ImQ_i/ImQ_k$ for plane absorbers (top) and with wedge angle $\omega=0.1$ (bottom)

Transmission

Tracking simulations:

• "True" action variables of 1771 particles evenly distributed in tetrahedron

$$(J_1 + J_{11})/2.6 + J_{111}/4 < 1 \text{ (cm)}$$

- Phases chosen at random
- No decay nor stochastic processes
- Correlation between energy and oscillation amplitudes introduced into initial conditions to avoid immediate longitudinal blowup

$$\delta_p = \delta_{p0} + 0.042J_1 + 0.013J_2 + 0.039J_3$$

Note:

Courant-Snyder invariant =2J,

to compare with normalized emittance multiply by $\beta\gamma\approx 2$:

 $\beta\gamma$ ×CSImax≈10cm or 2.2 σ for ϵ N=2cm

Survival after 25 periods (153m) 97%

Phase space distributions

Why momentum acceptance is so large (>60%) in the resonance case?

Tune "repulsion" from integer resonance

Nice surprise:

Large 2nd order chromaticity due to nonlinear field components keeps both tunes from crossing the integer !

Momentum compaction factor:

 $\alpha_p \approx 0.1 < 1/\gamma_0^2 \approx 0.22$

- in contrast to classical HCC with homogeneous absorber where

$$\alpha_p > 2/\gamma_0^2$$

to ensure longitudinal damping.

Longitudinal Hamiltonian

Kinetic energy in quasi-static approximation

$$K(\delta_p) = \int_{0}^{\delta_p} \left[1 - \lambda(\xi) \frac{\beta_0}{\beta(\xi)}\right] d\xi$$

where λ = orbit length/L₀

Contour plot of the longitudinal Hamiltonian for $\mathcal{G}=0.014$ - kinematic nonlinearity limits momentum acceptance, not insufficient RF bucket depth.

This makes problematic the achieving higher longitudinal damping rate with larger \mathcal{P} .

R. Palmer proposed to add ~ constant solenoidal field to better mix the transverse modes and equalize their damping rates. This can be achieved by powering e.g. negative solenoids with slightly lower current. With just 1.6% difference in currents:

Unfortunately, there is no appreciable gain in equilibrium emittance due to large β -wave excited with unequal solenoid field

Transmission also suffers (red vs. blue)

The proposed "helical FOFO snake:

- provides appreciable longitudinal cooling
- cools μ + and μ simultaneously
- has sufficiently large acceptance / equilibrium emittance ratio ~20 (transmission with account of stochastic effects is yet to be simulated)
- 2nd stage with reduced overall dimensions (using 1-cell RF) will achieve equilibrium emittances to ~3mm for 200MHz channel.

Works is underway to:

- simulate the channel with "standard" codes like ICOOL and G4BL
- "taper" the channel to optimize cooling rate and transmission
- to combine it with D. Neuffer's buncher/rotator (see his report at this conference)