Road to a Plasma Wakefield Accelerator Based Linear Collider

Mark J. Hogan

SLAC National Accelerator Laboratory

PAC 2009 Vancouver, B.C. May 5, **2**909

Work supported by Department of Energy contracts DE-AC02-76SF00515 (SLAC), DE-FG03-92ER40745, DE-FG03-98DP00211, DE-FG03-92ER40727, DE-AC-0376SF0098, and National Science Foundation grants No. ECS-9632735, DMS-9722121 and PHY-0078715.

TT IC C

Plasma Acceleration has made tremendous progress in the last two decades

May 5, 2009

PAC 2009 Vancouver, B.C.

Page 2

Plasma Acceleration has made tremendous progress in the last two decades

May 5, 2009

PAC 2009 Vancouver, B.C.

Page

The Beam Driven Plasma Wakefield Accelerator

- Two-beam, co-linear, plasma-based accelerator
- * Plasma wave/wake excited by relativistic particle bunch
- * Deceleration, acceleration, focusing by plasma
- * Accelerating field/gradient scales as $n_e^{1/2}$
- * Typical: n_e≈10¹⁷ cm⁻³, λ_p≈100 μm, G>MT/m, E>10 GV/m
- High-gradient, high-efficiency energy transformer

E-167: Energy Doubling with a Plasma Wakefield Accelerator in the FFTB (April 2006)

- Acceleration gradients of
 ~50 GV/m (3000 x SLAC)
 - Doubled energy of 45 GeV beam in 1 meter plasma
 - Record Energy Gain
 - Highest energy electrons ever produced at SLAC
 - Significant advance in demonstrating the potential of plasma accelerators

Nature 445 741 15-Feb-2007

Approach to PWFA-LC concept

- * Many ideas for plasma wakefield-based linear colliders
 - "Afterburner" double energy of a conventional rf linear collider just before the IP
 - Multi-stage afterburner
 - Proton driver (for e⁻)
- * Our present concept for a PWFA-LC:
 - Benefits from three decades of extensive R&D performed for conventional RF linear colliders
 - Possible to generate drive power extremely efficiently
 - Optimized to take advantage of the salient PWFA feature (gradient)
 - Reasonable set of R&D milestones that could be realized over the next ten years

A Concept for a Plasma Wakefield Accelerator Based Linear Collider

Bunch charge; Non-gaussian bunch profiles; Flat vs round

Need a new facility to investigate and iterate these ideas * through experiments

beams; SC vs NC pulse format; ...

Main / drive bunches -2.9E10/1E10

May 5, 2009

Multiple plasma cells

*

*

*

PWFA-LC concept will continue to evolve with further * study and simulation

- 20 cells, meter long, 25GeV/cell, 35% energy transfer efficiency
- Similar to linac of CERN CTF3, demonstrated performance

High current low gradient efficient 25GeV drive linac

Electron drive beam for both electrons and positrons

Key features of PWFA-LC concept

PAC 2009 Vancouver, B.C.

WE6PFP079 – Shilun Pei

WE6RFP097 – Chengkun Huang

FACET A new facility to provide high-energy, high peak current e⁻ & e⁺ beams for PWFA experiments

Primary Issues for any Plasma-based LC

- * Need to understand acceleration of electrons & positrons
- * Luminosity drives many issues:

 - Well defined cms energy spread
 - Small IP spot sizes \rightarrow small energy spread and small $\Delta \epsilon$
- These translate into requirements on the plasma acceleration
 - High beam loading of e+ and e- (for efficiency)
 - Acceleration with small energy spread
 - Preservation of small transverse emittances maybe flat beams
 - Bunch repetition rates of 10's of kHz
- Multiple stages allow better beam control and use of drive-beam
 - possible to demonstrate single stage before full system test

Short Bunches Bring Large Gradients and Long, Uniform High-Density Plasmas

Single FFTB Bunch Sampled All Phases of the Wake Resulting in ~ 200% Energy Spread

Generate Two Bunches by Selectively Collimating During Bunch Compression Process

FACET Experiments will accelerate a discrete bunch of particles with narrow energy spread

Double Energy of a 25GeV Beam in ~1m

ACCELERATOR LABORATOR

WE6RFP097 – Chengkun Huang

* Drive beam to witness beam efficiency of ~30% with small dE/E

Simulation of PWFA with Transformer Ratio~5

FACET program will investigate emittance growth from several sources

* Hosing. Experimental signature is exponentially growing transverse displacement of accelerated bunch. Will excite through deliberate r vs. z correlation on drive bunch.

* Ion motion. Potentially an issue when n_b/n_p ~m_i/m_e. Partially mitigated by using large emittance drive beam. FACET will attempt to quantify this for the first time by lowering the plasma density and measuring the emittance vs the ratio n_b/n_p.

	Normalized Emittance [mm-mrad]	Sigma z [µm]	n _p	n _b /n _p
FFTB < 2005	>120 (x & y)	700	10 ¹⁴	~10
FFTB > 2005	50 x 10	>12	10 ¹⁷	~10
FACET	30 or 50 x 10*	>18	10 ¹⁴ - 10 ¹⁷	<10 ⁴
PWFA-LC	D = 100, M = 2 x 0.05	D = 30, W= 10	10 ¹⁷	100, 10 ⁴

*Smaller emittance possible with upgrades

Plasma Stability & Cooling (1Hz to 1MHz)

- Hollow plasma channels were mentioned as one area for plasma source development
- Warm conducting PWFA-LC concept maximizes efficiency with ~ns bunch spacing

- Plasma stability/reproducibility on ns time scales over several hundred shots has yet to be studied in plasma accelerators
- Proof of principle experiment possible by extracting several damping ring bunches at integer*5.6ns spacing
 - Energy spectrum vs shot number will indicate effective density

High Gradient Plasma Acceleration of Positrons

- e+/plasma interaction much less studied than e-/plasma
- Focusing force on e+ bunches is nonlinear
- Emittance growth for single e⁺ bunch in uniform plasma
- Possible remedies include hollow plasma channel, linear wake
- * e⁺ can be accelerated with in e⁺ driven plasma wakes, but accelerating force is also nonlinear

Positron Acceleration in Electron Beam Driven Wakes is possible in the weakly non-linear regime

Sailboat Chicane Upgrade will enable full exploration of plasma acceleration of e⁺ in e⁻ wakes

Opportunities Beyond Acceleration e.g. Beam Delivery & Plasma Lens

Summary

- * Presented you a concept for PWFA-LC
 - Optimal use of Plasma Acceleration features
 - Experience of 30+ years of LC R&D to produce efficient design
 - Flexible concept, to allow changes resulting from FACET R&D
- * FACET designed to address major issues of a PWFA -LC stage and lead to the next step
 - Accelerate a discrete bunch (not just particles)
 - With narrow dp/p, preserved emittance
 - Identify optimum method for e+ acceleration (e+ or edriven wakes)
- * Successful completion of FACET
 - Define all parameters of PWFA-LC
 - Next would be a pre-construction demo of the final configuration
- * Experiments resume in early 2011!

May 5, 2009

Present collaborators

B. Allen USC * * W. An UCLA * K. Bane SLAC SLAC * L. Bentson SLAC * I. Blumenfeld C.E. Clayton UCLA * SLAC * S. DeBarger F.-J. Decker SLAC * * R. Erickson SLAC USC * R. Gholizadeh * M.J. Hogan SLAC C. Huang UCLA * * R.H. Iverson SLAC C. Joshi UCLA * **Duke University** * T. Katsouleas * N. Kirby SLAC

*	N. Li	SLAC	
*	W. Lu	UCLA	
*	D.B. MacFarlan	е	SLAC
*	K.A. Marsh	UCLA	
*	W.B. Mori	UCLA	
*	P. Muggli	USC	
*	Y. Nosochkov	SLAC	
*	S. Pei	SLAC	
*	T.O. Raubenhe	imer	SLAC
*	J.T. Seeman	SLAC	
*	A. Seryi	SLAC	
*	R.H. Siemann	SLAC	
*	P. Tenenbaum	SLAC	
*	J. Vollaire	SLAC	
*	D. Walz	SLAC	
*	X. Wang	USC	
*	W. Wittmer	SLAC	

PWFA Experimental timeline for FACET Program

(from FACET proposal with construction start beginning FY09)

Experimental Tasks and Milestones	FY09	FY10	FY11	FY12	FY13	FY14	FY15	FY16
Accelerate e- bunch with sufficient charge		FACET	FACET					
Accelerate e- bunch achieving low energy spread			FACET	FACET				
Accelerate e- bunch with high efficiency			FACET	FACET				
Demonstration of electron acceleration: high η , low ΔE								
Emittance preservation of e- bunch			FACET	FACET	FACET			
Demonstration of a single	e stage (of an ele	ctron P	WFA-LC		*		
Acceleration of e+ bunch by e+ drive			FACET	FACET	FACET			
Initial test of e+ acceleration in e- wakes				FACET	FACET			
Emittance preservation of e+ bunch				FACET	FACET		FACET	
Upgrade Sector-20 chicane								
Accelerate e+ by e- drive; charge, low dE/E						FACET	FACET	
Accelerate e+ by e-, high efficiency, low emittance						FACET	FACET	
Selection of optimum positron acceleration mechanism for a PWFA-LC								*
Upgrade injector with rf gun								
Plasma cell with jet and power removal	Study	Study	Eng.	Eng.	FACET	FACET	FACET	
Design plasma cell with needed stability and cooling								*

... Proceeding in parallel with PWFA-LC design, simulation and engineering

Beams vs Lasers

- * Physics:
 - Wakes and beam loading are similar for laser and beam driven plasmas
 - Driver propagation and coupling efficiency differ:
 - Lasers distort due to de-phasing, dispersion, photon deceleration, but to the plasma a 25GeV and 2GeV beam are nearly identical
 - Beams have higher coupling efficiency to wake (~2x)
 - Beams easily propagate over meter scales (no channel needed)

$$L_R \sim \pi \sigma^2 / \lambda \sim \pi \sigma^2 / 1 \mu \text{ vs } \beta^* \sim \pi \sigma^2 / \epsilon_v \sim \gamma \pi \sigma^2 / 1 \mu$$

- * Economics:
 - Lasers can more easily reach the peak power requirements to access large amplitude plasma wakes
 - \$100K for a T³ laser vs >\$5M for even a 50MeV beam facility
 - However, need peak power AND average power (unlike DLA)
 - Average power costs sets the timescale for HEP applications $L = \frac{P_{beam}}{N} H_{p}$
 - \$10⁴/Watt for lasers currently x 200MW ~ \$2T driver. Much research $\sigma_x \sigma_y$ developing high power lasers but...
 - \$10/Watt for CLIC-type RF x 100MW ~ \$1B driver

Extensive FFTB Program Developed Required Techniques & Apparatus for FACET Plasma Program

Linear Collider requirements

* For e+ e- linear collider, luminosity is given by L= $f_{rep} N^2/(4\pi\sigma_x\sigma_y)$

major dependence is

$$L \sim \delta_{\rm B}^{1/2} P_{\rm beam} / \epsilon_{\rm ny}^{1/2}$$

- * The achievable emittance ε_{ny} is limited, thus
- beam power P_{beam} determines the luminosity
- TeV collider call for P_{beam} ~10 MW of continuous power, small emittances and nanometer beams at IP

Hollow Channel Plasmas may offer better accelerating wakes and reduce emittance growth

- * Potential for larger accelerating fields and less aberrated focusing
- * Synergy with DWA which may work equally well with e- & e+
- * Challenge for plasma source development in field ionized regime
- * Potential to engage new users/collaborators:

Matching to plasma cells

- * Matching into axial focusing plasma channel is important for emittance preservation
 - matched beta:

β₀=23mm (E/500GeV *1E17/n)^{1/2}

- * Profile of plasma density: adiabatic matching, easier optical system
 - good control/knowledge of plasma density profile required
 - Eases beta-matching by an order of magnitude
- * The above describes e- in blowout regime, situation with e+ needs to be studied

DWA: Dielectric Wakefield Accelerator

A "drive" beam excites wake-fields in the tube, while a subsequent witness beam (not shown) would be accelerated by the Ez component of the reflected wakefields (bands of color).

Plasma accelerator research at FACET is in the context of a broader, longer term effort

				Possible Timeline for PWFA Development					nt		
				Fiscal Y	fear		20	10	2015	2020	2025
				FACET	l (propose	ed)					
				Cons	truction						
				Initial	Program						
				FACET Upgrade(s)						_	
				EACET		esign and para	meters of Pw	TA-LC 0	re defined	A	
				Const	truction	optionj					
Concurrent Design and Engineering T	asks a	nd Miles	tones	Staging of Two 25GeV Modules							
Multi-bunch PWFA acceleration	Study	Study	Study	Multi-bunch Operation							
Initial tolerance studies	Study	Study	Study	Shaped profiles for High Efficiency							
Colinearity of main and drive beams		Study	Study			1		Optimiz	zed design o	f PWFA-LC is pi	roduced
Timing offset of main and drive beams		Study	Study								
Drive beam generation, affordable power		Study	Study								
Drive beam utilization		Study	Study								
Combiner recombiner, reasonable footprint		Study	Study								
Shaping the drive bunches for high efficiency			Study	Study							
Main beam injector, compressor & DR			Study	Study							
Final focusing, large energy acceptance		Study	Study								
Cleaning or collimation of the accelerated beam					Study	Study					
Evaluate physics reach of PWFA-LC options					Study	Study	Study				
Detailed design of PWFA-LC subsystems						Study	Study	Stud	iy		

Additional Applications of Plasma Wakefield Acceleration

- * PWFA acts as a transformer and uses existing technology
 - High charge, low energy bunch work work with the energy bunch
 - Transformer ratios of x2 predicted for gaussian bunches; high with shaped bunches
 - RF acceleration & notch collimation technology exist
- * Increase energy reach of existing linacs, e.g. linac based radiation sources
- * Simplify construction of new linacs
 - Many applications need low charge bunches: Storage ring injectors, SASE FELs, Medical linacs
 - RF linacs naturally accelerate high charge bunches
 - Use PWFA for much more compact system
- * Linear Colliders or other high energy linacs
 - Dedicated drive beam ____ inexpensive generation of high power beams
 - PWFA Cost effective access to very high energies

Consistent High-Level Parameters for PWFA-LC

Luminosity	3.5×10 ³⁴ cm ⁻² s ⁻¹				
Luminosity in 1% of energy	1.3×10 ³⁴ cm ⁻² s ⁻¹				
Main beam: bunch population, bunches per train, rate	1×10 ¹⁰ , 125, 100 Hz				
Total power of two main beams	20 MW				
Main beam emittances, $\gamma \epsilon_x$, $\gamma \epsilon_y$	2, 0.05 mm-mrad				
Main beam sizes at Interaction Point, x, y, z	140 nm, 3.2 nm, 10 µm				
Plasma accelerating gradient, plasma cell length, and density	25 GV/m, 1 m, 1×10 ¹⁷ cm ⁻³				
Power transfer efficiency drive beam=>plasma =>main beam	35%				
Drive beam: energy, peak current and active pulse length	25 GeV, 2.3 A, 10 µs				
Average power of the drive beam	58 MW				
Efficiency: Wall plug=>RF=>drive beam	50% × 90% = 45%				
Overall efficiency and wall plug power for acceleration	15.7%, 127 MW				
Site power estimate (with 40MW for other subsystems)	170 MW				

Plasma Acceleration Program and Challenges

- * Accelerator physics: produce drive/witness bunches
 - For $n_p \sim 10^{17}$ cm⁻³, need two bunches within 100µm!
- High Gradient Acceleration of witness bunch in ~ 1 mlong plasma
 - * Narrow energy spread & preserved emittance of the accelerated witness bunch

particle acceleration \longrightarrow beam acceleration

- * Beam loading of plasma wake, energy transfer efficiency
- * Positrons in PWFA

May 5, 2009

- * Plasma Stability and Tolerances
- * Further developments in simulation tools

