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High- order  Harmonic FELs For 
UV and X-ray Production 

14 GeV e-beam

Coherent X-Ray Production in a single-pass FELs with a fixed e-beam energy

Undulator
L~100 m; λu=3.3 cm; K=3.7
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High-Order FEL Interactions are considered both for SASE and seeded  cascade  FELs

PRL, 96,084801 (2006), New Journal of Physics, 8, 294, (2006).

n=1 fundamental frequency
When K>1
n=3,5,7…high-order FEL resonances

+) nλ choice for the seed
++) γ can be √n smaller
+++) λu can be larger and K
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Seeded FEL/IFEL interactions
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ẑ

k
ρ

Laser + electron 
beam



UCLAUCLA

Harmonic coupling in an IFEL undulator

If K≥1, transverse motion is relativistic
and spectrum of the undulator radiation
gains odd harmonics n=3,5,7 …
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λu = 3.3cm;K =1.8

Lorentz Force IFEL equations

UCLA P. Musumeci et al, Phys. Rev. Lett, 94 016501 (2005)
SLAC C.M.S Sears et al, Phys. Rev. Lett, 95, 194801 (2005)
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7th order  IFEL experiment
at the UCLA Neptune Laboratory 

CO2 Laser
1 Hz PRF
P= 40 MW
4mJ, 100 ps

Electron beam
E=12.4 MeV
ε=6 mm x mrad
C~500 pC

NaCl lens
F=2.5 m

Electron 
spectrometer

undulator

e-beam

mirror 
with a hole

ICT

Microbunching in the undulator using 7th order IFEL interactions10.6 μm x 7=74.2 μm

Undulator
L=33 cm; λu=3.3 cm
K=1.8

Gaussian Laser beam
F/100 focusing provides w0=700 μm
ZR=14.5 cm;   Lundulator~ 2ZR
With 20 MW of power I~1 GW/cm2
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1.CTR screen
2.Phosphor screen
3.Ge plate

Microbunching on fundamental λ

CTR Diagnostic for Bunched Beam 

mb∼10.6 μm, 2nd-λmb∼5.3 μm and 3rd-λmb∼3.5 μm harmonics

Electron spectrum

Electron 
spectrometer

MCT 

e-beam
Undulatormirror with a hole

CO2 laser

ICT

BBPF 

OAP 

movable 
mirror

CCD camera

CTR Harmonic Spectrum

A set of BBP filters provides an adequate determination of harmonic content.
Background is down to ~0.5 pJ, the S/N ratio is 200-2. 

10.6 μm 3.5 μm5.3 μm

1 μm
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Resonant Condition for 7th order IFEL 

A correlated rms energy spread is 0.7% measured with and without the undulator

A slice of the beam over which the IFEL interactions take place is 100μm (~300 
fs), results in effective energy spread of 0.02% and provides microbunching of 
almost the whole beam or part of the beam at a detuned energy.  
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The CTR signal on fundamental versus the charge and the spot size on the screen. 

CTR scaling 

Clear nonlinear CTR signal increase versus charge was observed.

Strong (1/σx,y)4 scaling is very close to one observed in the experiment. 

Normal incidence
Forward CTR:
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A. Tremaine, PRL 81,5816(1998)
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UCLA
Harmonics of the Bunched Beam 

Experimentally achieved coupling efficiency is comparable to that for n=1 case!
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Microbunching on fundamental λmb∼10.6 μm, 2nd-λmb∼5.3 μm and 3rd-λmb∼3.5 μm harmonics.
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See S.Ya. Tochitsky et al., Phys. Rev. STAB 12, 050403 (2009).
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3D Simulations of a Bunched Beam 

The harmonic ratios extracted from simulations U1/U2=64 and U1/U3=2025 are 
grossly off the measured values. 
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TREDI simulations for laser power 35 MW, w0=600 μm and σrms=400 μm  
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Transverse effects in bunched beam 

The e-beam is bunched stronger on axis and the effective beam size are
smaller for higher harmonics σx,y=380 μm; 2nd σx,y=335 μm; 3rd σx,y=295 μm, 

then for this effective beams harmonic ratios U1/U2=14 and U1/U3=53. 
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TREDI simulations for laser power 35 MW, w0=600 μm and σrms=400 μm  
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1) We report efficient coupling between the relativistic electrons 
and seed radiation in a 7th harmonic IFEL interaction. 

3) Comparison between the measurements and 3D simulations 
revealed that for a seeded IFEL/FELs there is a difference in 
transverse bunching on different harmonics which may play an 
important role on the CTR spectrum.   

4) Inclusion of the high-order IFEL/FEL interactions (n≥3) on equal 
footage with the regular ones adds flexibility in designing 
undulator based systems. 

2) We experimentally characterized the strength of this high-order 
IFEL interactions by analyzing a fundamental, the second and 
the third harmonics of a microbunched beam in CTR spectrum. 
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Synchronization of e-beam and 10μm 
pulse on a picosecond scale 

Cross-correlation between 10 μm laser pulse and electrons in Ge slab and Al foil

Accuracy of synchronization is limited 
by 

10 ps bunch length e-beam duration

100 ps CO2 laser pulse

dN
dt

= −αN +
βJ(t)

e
,βiscrossec tion

Ε−beam induced carrier generation in Ge

Ge
Detector

10 ps e-bunch



UCLA

Transition Radiation as a Diagnostic for 
Bunched Beam 

1.Vacuum

Transition radiation

e-

CTR Spectrum of a Microbunched beam 
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Since the beam has has Fourier components at kr and its harmonics, the CTR spectrum 

2.Metal
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