PROGRESS IN BEAM FOCUSING AND COMPRESSION FOR TARGET HEATING AND WARM DENSE MATTER EXPERIMENTS

Peter Seidl

Lawrence Berkeley National Laboratory, HIFS-VNL

...with A. Anders¹, J.J. Barnard², F.M. Bieniosek¹, R.H. Cohen², J.E. Coleman^{1,3}, M. Dorf⁴, E.P. Gilson⁴, D.P. Grote², J.Y. Jung¹, I. Kaganovich⁴, M. Leitner¹, S.M. Lidia¹, B.G. Logan¹, P. Ni¹, D. Ogata¹, P.K. Roy¹, A. Sefkow⁴, W.L. Waldron¹, D.R. Welch⁵ ¹Lawrence Berkeley National Laboratory ²Lawrence Livermore National laboratory ³University of California, Berkeley ⁴Princeton Plasma Physics Laboratory ⁵Voss Scientific, Albuquerque

> PAC 2009 May 7, 2009 Vancouver, Canada

Outline

Beam requirements

Method: bunching and transverse focusing

Beam diagnostics

Recent progress:

- longitudinal phase space measured
- simultaneous transverse focusing and longitudinal compression

enhanced plasma density in the path of the beam

Next steps toward higher beam intensity & target experiments

- greater axial compression via a longer-duration velocity ramp
- time-dependent focusing elements to correct chromatic aberrations

Explore warm dense matter (high energy density) physics by heating targets uniformly with heavy ion beams

 $\frac{T(eV)}{9.24}$

Later, for uniformity, experiments at the Bragg peak using Lithium ions

Approach: High-intensity in a short pulse via beam bunching and transverse focusing

The time-dependent velocity ramp, v(t), that compresses the beam at a downstream distance L. v(0)

$$t) = \frac{v(0)}{(1 - v(0)t/L)}$$

Induction bunching module (IBM) voltage waveform:

 $V(t) = \frac{1}{2} mv^{2}(t) - \phi_{o} \text{ , } (e\phi_{o} = \text{ ion kinetic energy.})$

NDCX-1 has demonstrated simultaneous transverse focusing and longitudinal compression

Neutralized Drift Compression Experiment (NDCX) with new steering dipoles, target chamber, more diagnostics and upgraded plasma sources

New: steering dipoles, focusing solenoid (8T), target chamber, more diagnostics, upgraded plasma sources The Heavy Ion Fusion Virtual National Laboratory

Beam diagnostics - improved Fast Faraday Cup: lower noise and easier to modify

Beam diagnostics in the target chamber: Fast faraday cup

Beam diagnostics in the target chamber: scintillator + CCD or streak camera, photodiode

Simultaneous longitudinal compression and transverse focusing, compared to simulation.

LSP simulation of drift compression

\\Sargas\dalev\stx\integrated_8T\notilt_8T_-3kg\tilt_applasma_2\smovie70.p4

With the new bunching module, the voltage amplitude and voltage ramp duration can be increased.

FEPS = ferro-electric plasma source

0.6

It is advantageous to lengthen the drift compression section by 1.44 m via extension of the ferro-electric plasma source

~2x longer drift compression section (L=2.88 m), Uses additional voltseconds for a longer ramp and to limit ΔV_{peak} & chromatic effects

Ferro-electric plasma sources for neutralized drift compression (PPPL).

Ferro-electric plasma source (FEPS)

- Generated from cylindrical surface
- Installed downstream of IBM
- n_e ≈ 2-8 x 10¹⁰ cm⁻³

LSP simulation

New FEPS module prior to installation.

Commissioned new IBM and extended FEPS plasma source.

IBM 20 independent 50%-Ni, 50%-Fe (Astron) cores.

Waveform stacking efficiency $\eta_{net} = \frac{|V \cdot s \text{ in full range}|}{|V \cdot s \text{ in single core}| \times N_{cores}} = 56\%$

due to partial cancellation from cores driven with opposite polarity

In the target chamber: With the new IBM/FEPS: ~2 x more ion beam charge in a compressed pulse than the previous IBM/FEPS.

Still tuning up the system.

The improved filtered cathodic arc plasma source (FCAPS) injection has led to a higher plasma density near the target

PIC simulation of injection from Cathodic-Arc Plasma Sources confirm experiment measurements

Calculations support a longer IBM waveform with twice the drift compression length

Comparison of LSP, the envelope-slice model, and the simple analytic model.

(a) no final focusing solenoid.

- (b) New IBM, the final focusing solenoid ($B_{max} = 8$ Tesla) $L_{drift} = 144$ cm, <u>initial setup</u>
- (c) with twice the drift compression length (L=288 cm) as the present setup.

A time dependent Einzel lens to correct the chromatic aberrations

First target experiments: Prepulse heats thin foils to 3000-4000 K, additional heating by bunched beam.

0903240039 0903240041

From fast optical pyrometer data: thin gold and carbon foil targets are heated to 3000-4000 K by the portion of the uncompressed beam (1 μ s) that precedes the bunched beam. Additional heating from the bunched beam has been detected.

The beam characteristics are now satisfactory for target diagnostic commissioning and first target experiments

- Energy spread of initial beam is low (130 eV / 0.3 MeV = 4 x 10⁻⁴) --> good for sub ns bunches.
- Simultaneous axial compression (≈50x) to 1.5 A and 2.5 ns Beam diagnostics
- enhanced plasma density in the path of the beam
- PIC simulations of plasma and beam dynamics
- Greater axial compression via a longer velocity ramp while keeping $\Delta v/v$ fixed.
- Next steps: time-dependent focusing elements to correct considerable chromatic aberrations

backup slides

Alignment: Beam centroid corrections are required to minimize aberrations in IBM gap & for beam position control at the target plane

Alignment survey: mechanical structure aligned within 1 mm.

Manufacturing imperfections (coil w.r.t support structure) not included.

Observe < 5 mm, <10 mrad offsets at exit of 4 solenoid matching section without steering dipole correction.

We can correct the centroid empirically with steering dipoles at the exit of the solenoid matching section.

The WDM regime is at the meeting point of several distinct physical regimes -- a scientifically rich area of HEDP

Accelerators have several advantages for generating warm dense matter

Precise control of energy deposition and ability to measure ion beam after exit

Sample size large compared to diagnostic resolution volumes (~ 1's to 10's μ thick by ~ 1 mm diameter)

Uniform energy deposition (<~ 5%)

Able to heat any target material (conductors, insulators, foams, powders, ...)

A benign environment for diagnostics

High repetition rates (10/hour to 1/second)

