Particle Accelerators in Korea

PAC'09

Vancouver, Canada

May 7, 2009

Won Namkung

Pohang Accelerator Laboratory (PAL) Pohang University of Science and Technology (POSTECH) Pohang 790-784, Korea

Outlines

- Brief Facts about Korea
 Government Organization for R&D and Budget Trend
- Large-scale Science Programs
 Accelerator, Nuclear, Fusion, Space Programs
- Accelerators:
 - PLS and PLS-II at POSTECH
 - Proton Linac at KAERI
 - Plasma Wakefield Acceleration at GIST
 - Medical Accelerators
 - Heavy Ion Accelerator
- *R&D Collaboration with Industrial Companies*

Brief Facts about Korea

People & Language: Korean (~4,500 yrs in the area)

Area (South): ~100,000 km² (~38,000 sq. mi.) **Population** (South): 48.5 million

Recent History:

1945: Divided into North and South
1950~1953: Korean Conflict
1960~1970: Modernization (Migration to cities)
1970~1980: Industrialization (Heavy Industries)
1990~2008: High-tech oriented

Leading Industries:

Electronics, Steel, Ship-building, Automobile, Chemicals, Construction, Textiles Economy: GDP = 929 B\$, 19 k\$/capita in 2008

Religion: Christian (~30%), Buddhism (~30%) **Education:** > 80% high-school seniors go to college

Korean Government Reorganization

- The new administration combined Ministry of Education and Ministry of Science and Technology in March 2008.
- A bureau for large-scale science programs is established
- There are growing demands for promoting basic sciences and multi-disciplinary users' facilities

Ministry of Education, Science and Technology (MEST)

Science and Technology Budget in Korea

Large-scale Science Programs in Korea

On-going programs: PLS - Light Source: Hanaro - Research Reactor: KSTAR - Fusion Tokamak: **PEFR** - Proton Linac: ITER-Korea – *ITER member*: PLS-II – *Light Source Upgrade*: Scientific Satellite:

Proposals: - X-ray FEL (PAL) - Heavy Ion accelerator

Hanaro Overview

- Research Nuclear Reactor
 30-MW open-tank-in-pool type, and 20% U₃Si-Al Fuel
- National users' facility
 - Intense neutron source for neutron science
 - Medical & industrial application of Radioisotopes
- Construction: Feb. 1988 ~ Dec. 1994
 First Criticality Achieved: Feb. 1995
- Construction & Operation by Korea Atomic Energy Research Institute (KAERI)

⇒ 20 reactors are in operation (30 ~ 40 %) and 6-units are under construction with the Korea Standard Type

KSTAR Overview

- Fusion Research Tokamak
 - All Super-conducting magnets
 - Steady-state capable tokamak with a major radius of 1.8 m
- National users' facility
 - Long-pulse tokamak plasma research
 - Heating and current drive for steady-state operation
- Project Period: Jan. 1996 June 2008
- First Plasma: June 2008
- Construction & Operation by National Fusion Research Institute (NFRI)

KSTAR Experimental Buildings

KSTAR Construction Progress

Installation of Cryostat Cylinder

2007.1

ECH Pre-ionization (POSTECH Group)

2nd Harmonic ECH Start-up

ECH Pre-ionization

* Achieved Loop voltage : less than 0.3 V/m, ~ 2.0 V

Joining in ITER

G. S. Lee (1995), NFRI

ITER-Korea Procurement Items

Space Program

- 6 communication satellites built in the past 20 years
- First Korean astronaut in 2008
- Launching site has been built
- First launch of scientific satellite (~100 kg) is expected in 2009

Pohang University of Science and Technology (POSTECH)

- Established by POSCO, a steel company, in 1986
- One of the leading S&T Universities in Korea along with SNU in Seoul and KAIST in Daejeon
- 11 Academic Departments in Science and Engineering
- Students: Undergraduate: 1,200 Graduate: 1,500
- Faculty members: ~ 250

POSTECH Campus and PAL

PLS Overview

- In 1987, POSTECH, a newly established university, proposed to construct a synchrotron light source on its campus.
- PLS is a 3rd generation synchrotron radiation source:
 2 GeV injector linac and storage ring with upgrade option to 2.5-GeV.
- Construction Project: April 1988 ~ December 1994
 - Funded by POSCO (60%) & Government (40%)
- Operation: funded by Government (80%) & POSCO (20%)

Pohang Light Source (PLS) at PAL

PLS Beamline Status

February 2009

Examples of Research at PLS: Academic and Industry

Statistics for Experiments and Users at PAL

'08 data is tentative

PLS-II Overview

- PLS –II is the upgrade program of PLS after 15-yr's:
 3.0 GeV injector linac and storage ring with DBA lattice and lower emittance (20 straight sections for users)
- Project period: January 2009 ~ December 2011
 Funded by Government (100%)
- This afternoon, 17:00 at TH4PBC03 "PLS-II at PAL," by S. Nam.

Proton Engineering Frontier Project

- High-Power Proton Accelerator: Staged construction of 1.0 GeV, 20 mA proton linac
 - 100 MeV: New Frontier Program (2002-2012)
 - 1.0 GeV: Under R&D Study
- Government decided the construction site in Gyeongju
 Near the KTX station (March 2006)
- National Users' Facility: Intense neutron source for basic and applied science research
- Lead Lab.: Korea Atomic Energy Research Institute (KAERI)

PEFP 20 MeV Linear Accelerator

Site Plan for the PEFP

Laser-Plasma Wakefield Acceleration at GIST

- Peak power : 100 TW
- Pulse duration : 30 fs
- Wavelength : 800 nm (Ti:sapphire)
- Energy stability ~1.4% rms

Experimental Results

Constructed New Research Bldg. - Opened in Nov., 2008

Laser system upgrade to 500 TW is now underway in the new research building and it will be finished by 2010

KIRAMS-13 Cyclotron

KIRAMS-13 installed at Kyungpook National University Hospital

Regional Cyclotron Center in KOREA

Proton therapy facility, National Cancer Center

Treatment of the first patient

•2002 July: Contract with IBA •2003 Jan: Complete the building design June: Start the building construction •2005 Jan: Site survey Feb: Starting the installation **Oct: Beam test begin** •2006 Dec: Acceptance of 1st gantry room +2nd gantry room+ fixed beam room •2007 Mar 19: Treatment of the first patient (prostates) July: 2nd gantry room is used to treat patient **Aug-Oct: Fixed beam treatment** room to be used Dec: End of one year operation by IBA

•2008 Dec: total treatment of 370 patients

KoRIA: Korea Rare Isotope Accelerator

- Multipurpose HI accelerator for RIB:
 - Nuclear and Astro-nuclear Physics
 - Nuclear Data Production for Applications
 - Materials Science using RIB
 - Bio and Medical Science with RIB and HI
- Planning: 2009 ~ 2012:
 - CDR started in 2009
- Construction: Planned in 2012 ~ 2016

Industrial Companies for Global Competitiveness

Leading industrial companies in Korea built-up their own R&D capability for global competitiveness, for examples,

Electronics Iron & Steel Shipbuilding Automobile Communications

POSCO Plants in Pohang & Gwangyang

Gwangyang Plant

Established:	1968
Employees:	17,300
Steel Production:	~ 30.0 M tons
Revenue:	30.6 B\$
Net Profit:	4.4 B\$

Pohang Plant

R&D Collaboration with Industrial Companies

	Samsung		POSCO		Hyundai Heavy	
units	Electronics		Steel		Ship building	
(Trillion KRW)	Revenue	Profits Net / Business	Revenue	Profits Net / Business	Revenue	Profits Net / Business
2006	59.0	7.9 / 6.9	20.0	3.2 / 3.9	13.0	0.7 / 0.9
2007	63.0	7.4 / 5.9	22.0	3.7 / 4.3	16.0	1.7 / 1.8
2008	73.0	5.5 / 4.1	30.6	4.4 / 6.5	20.0	2.3 / 2.2
University	SKK University		POSTECH		Ulsan University	
Scientific Area	KSTAR SC Coil R&D		PLS Accelerator		KSTAR Vacuum Chamber	

Summary

- Korea has successfully improved her economic condition through industrialization. The underline driving force is considered as, not only the government planning but also trained man-power available through individual education.
- With the success of light source, research reactor and tokamak, there are growing demands for more multi-user facilities, such as light sources, heavy ion accelerator, and others.
- Government now established a bureau for large-scale science programs including space science and fusion research.
- For the large-scale science projects, we need consensus among scientists in this economy-oriented society.