Paper | Title | Page |
---|---|---|
MO4PBC03 | Developments for Cornell's X-Ray ERL | 106 |
|
||
Cornell University is planning to build an Energy-Recovery Linac (ERL) X-ray facility. In this ERL design, a 5 GeV superconducting linear accelerator extends the CESR ring which is currently used for the Cornell High Energy Synchrotron Source (CHESS). Here we describe some of the recent developments for this ERL, including linear and nonlinear optics, tracking studies, vacuum system design, gas and intra beam scattering computations, and collimator and radiation shielding calculations based on this optics, undulator developments, optimization of X-ray beams by electron beam manipulation, technical design of ERL cavities and cryomodules, and preparation of the accelerator site. |
||
|
||
TH5PFP085 | Exact CSR Wakes for the 1-D Model | 3404 |
|
||
Funding: NSF PHY-0131508 The forces from Coherent Synchrotron Radiation (CSR) on the particle bunch can be computed exactly for a line charge. Modeling a finite bunch by a line charge often produces a very good model of the CSR forces, and the full bunch can then be propagated under these forces. This 1-D model of CSR has often been used with a small angle approximation, an ultra relativistic approximation, and the approximation that radiation originating in one dipole can be neglected in the next dipole. Here we use Jefimenko's forms of Maxwell's equations, without such approximations, to calculate the wake-fields due to the longitudinal CSR force in multiple bends and drifts. Several interesting observations are presented, including multiple bend effects, shielding by conducting parallel plates, and bunch compression. |