
EFFICIENT DIFFERENTIAL ALGEBRA COMPUTATIONS*

John R. Cary, Tech-X Corporation, Boulder, CO and University of Colorado, Boulder, CO
Svetlana G. Shasharina, Tech-X Corporation, Boulder, CO

* Work supported in part by DOE/SBIR Grant No. DE-FG03-97ER82499

Abstract

Numerical Differential Algebra (DA) is a powerful tool
for studying non-linear motion in accelerators, beam and
optics devices. Implementation of DA is the easiest in an
object oriented programming language, especially C++.
In addition to standard object oriented features, C++
allows for operator overloading and static polymorphism
via templates. In this paper we discuss (1) use of
templates for polymorphic use of the code, so it can treat
both dynamical variables and DA maps, (2) methods of
optimisation for speed needed for efficient use DA in
accelerator physics and other applications.

1 DIFFERENTIAL ALGEBRA IN
LAYMAN’S TERMS

Dynamical systems – accelerators, beam and optics
devices – can be represented by a mapping of initial
conditions (depending on parameters a) to final values
variables zf = M(zi, a). Calculation of this map constitutes
a very complicated task, since the motion of the particles
is generally highly non-linear. The fields and parameters
of the system are usually known to a certain order in a
Taylor expansion in a deviation from some reference in
the dynamical space. That is why it makes sense to limit
the accuracy of map calculations to the same order and
treat all functions of calculation as truncated Taylor series.
First order derivatives of the map are known as transfer
matrix. Nonzero higher order derivatives of the map
represent aberrations, while derivatives with respect to
parameters are sensitivities.

Coefficients of the truncated expansion can be used as
DA representation of functions and, in fact, constitute a
vector space. One can show that this space is a
differential algebra so that it has arithmetic operations,
inversion, roots and derivation [1]. DA representations of
components of identity function, zI (i=0,…,d, with d being
the dimension) form algebra generators, vectors with all
but one component equal zero. The nonzero component,
1, corresponds to first order derivative with respect to zi.
For example, the zeroth generator will have components
{0,1,0,….,0} (with the first position reserved for the
constant term). Note, that the order of coefficients in
vector representation is a matter of choice, although
lexicographical order is most popular (see [2]).

The whole realm of DA applications is very rich and
powerful. The most commonly used application is
calculation of non-linear maps for solving equations of
motion in a range of initial conditions. Since the map is a
solution of equations of motion and is equal identity at
t=0, it can be found by propagating of identity map
through the system. Identity map can be considered a d-
dimensional vector of generators. Hence is the recipe for
generating maps: one has to replace all functions in the
integration algorithm with their DA representations and
propagate the identity map. The resulting “matrix” will
give the system map to the desired order. Once the map is
found, there is no need to integrate trajectories with
different conditions: one can calculate the final state by
substituting monomials corresponding to initial condition
into the map. This procedure is much faster than
integration, so it can be used for multiparticle calculations
and long-term stability studies.

2 C++TEMPLATES AND GENERATION
OF MAPS

In this section we show how the recipe for generating
maps discussed above can be elegantly implemented in
C++. First we need to discuss C++ templates mechanism.
Then we give an example of its application to generating a
simple map.

2.1 C++ Templates and Static Polymorphism

Templates is a powerful tool for providing polymorphism
used extensively in generic programming (see [3]). A
typical example of a template function is Swap()
function performing sequence of actions not dependent on
type of the arguments:
 template <class T> function Swap(T& a, T& b) {
 T temp(a);

 a = b;

 b = temp;

 }

The type of the template parameters is passed to compiler
at compile time when compiler substitutes the actual type
into the templated code (template instantiation) and uses
templated code as if it is not templated but indeed has the
needed type inserted. This polymorphism is called static
polymorphism since the choice of the type happens at
compile, not run time. Thus, the Swap() function become

0-7803-5573-3/99/$10.00@1999 IEEE. 377

Proceedings of the 1999 Particle Accelerator Conference, New York, 1999

“untemplated” as soon as some concrete type is used for
its arguments:
 int main() {

 SomeType x (2);

 SomeType y(3);

 Swap(x, y);

}

If class SomeType declares copy constructor and
assignment operator private, the main program will not
compile. This gives a typical example of template
programming: most of templates are built with some
assumptions (template constraints) for the template
parameters. Note that C++ allows developers to create
free template functions, template classes and template
member functions in non-template classes.

2.2 Templates, Traits and Map Generation

Now we are ready to explain how we can generate maps,
provided that we know how to integrate usual dynamic
variables. Imagine that we have class System which has
a template function Advance() for calculation of final
value the vector describing the dynamical variables in 6-
dimensional space. For simplicity, we will use a function
propagating through a simple drift. The argument will be
encapsulated in a vector container whose choice depends
on a user:
 void template <class VecType>

 System::Advance(VecType& z) {

 double pz = CalcPz(p);

 double lenOverPz = length/pz;

 p[4]+=lenOverPz*

 (InvReferenceBeta()+p[5]) +

 length*(1+Eta()*Delta_S)*

 InvReferenceBeta();

 p[2]+=p[3]*lenOverPz;

 p[0]+=p[1]*lenOverPz;

 }

VecType can be any of multiple containers for double
vectors (std::vector<double>, valaray<double> etc.).
Now we want to generalise this function so that it can treat
not only double vectors, but also maps.

To make the receipe described in the previous section
work, we have to overload operator[](int) in
DAMap class so that it returns a corresponding DA vector.
In addition, we assume that DA maps and vectors are
implemented as template classes with type of coefficients
being the template parameters, so that we can describe
real or complex DA’s used for normal form analysis. We
also found advantageous to have dimension and order as
template parameters, but for simplicity will omit them
here. Thus, schematically the DAMap class will have the
following structure:
template <class U> class DAMap {

 DAVector<U>* data;

 public:

 const DAVector<U>& operator[](int i) const

 {return data[i];}

 DAVector<U>& operator[](int i)

 {return data[I];}

 //etc.

};

Now, lets go back to generalisation of the Advance()
function. Instead of VecType we now imagine more
general template parameter which can include not only
vectors, but also maps, since we made sure that
DAMap::operator[](int) is defined. The first question
coming to mind is what should we put instead of type
declaration “double”? Evidently, this type should be the
same as a type of variable returned by operator []
(int). In case of a double vector, it should be double,
in case of a DA map, this should be a DA vector! If we
want to use one generalised Advance() function for
both dynamic vectors and DA maps, how do we code this
information so it works for both?

The solution is in using traits (see [4]). Traits are
special classes, which provide mechanism to associate
certain functions, values or types with particular classes
and access them in a uniform way. For example, we often
need to know what is the type of data is contained by the
vector? In case of std::vector<T> it will be T. In
case of DAMap<U>, it should be a DAVector<U>, since
any map is just a vector of DA vectors. Similarly, we
might want to know a size of the vector, which will be
function size() for std::vector<T> and
DAMap<U>::Dimension() for DA maps. This
information can be encapsulated in the following traits
classes. First we define a general template class which,
being unspecialised, does not have anything:
 template <class U> struct UnaryTraits {};

Now we can partially specialise it for vectors and maps:
 template <class U>

 UnaryTraits <std::vector<U> > {

 //Define the type of data

 typedef U ValueType;

 //Get size of the vector

 static int GetSize(const std::vector<U>& u) {

 return u.size()}

};

template <class U>

 UnaryTraits <DAMap<U> > {

 //Define the type of data

 typedef DAVector<U> ValueType;

 //Get size of the vector

 static int GetSize(const DAMap<U>& u) {

 return u.Dimension();}

};

With traits defined, we can rewrite our Advance()
function in such a way that it will treat both vectors of

378

Proceedings of the 1999 Particle Accelerator Conference, New York, 1999

dynamic variables and DA maps by accessing the correct
ValueType:
 void template <class AnyType>

 System::Advance(VecType& z) {

 typedef typename

 UnaryTraits<AnyType>::ValueType ValueType;

 ValueType pz = CalcPz(p);

 ValueType lenOverPz = length/pz;

 p[4]+=lenOverPz*

 (InvReferenceBeta()+p[5]) +

 length*(1+Eta()*Delta_S)*

 InvReferenceBeta();

 p[2]+=p[3]*lenOverPz;

 p[0]+=p[1]*lenOverPz;

 }

Note that function CalcPz() should be rewritten and
become a template function to return the appropriate
value:
 template<class T> T System::CalcPz(T& p) {

 T result;

 //calculate result

 return result;

 }

In the main program, one has to decide which quantity
to propagate and use the Advance() function:
 int main() {

//Create the system:

 System sys();

//Set system’s parameters (not shown)

//Create a 6-dimensional double:

 std::vector<double> x(6);

//Set x to some intial conditions(not shown)

//Propagate x through the system

 sys.Advance(x);

//Create a default 6-dimensional map

//of the 4 order

 DAMap<double> map(6,4);

//Set this map to identity (not shown)

//Find the map of the system:

 sys.Advance(map);

//Vector x now has been propagated once,

//now do it the second time using the map

//(syntax arbitrary):

 x.Map(map);

//etc.

 return 0;

}

Thus, use of template functions and trait mechanism
allows for true reuse of the code, so that the same function
is used to integrate dynamic variables and generate non-
linear maps.

3 OPTIMIZATION FOR NUMERICAL
EFFICIENCY

3.1 C++ and Performance

As many scientist like to complain, C++ can be inefficient
for numerical for number crunching. There are many
reasons for that, one of which is that it is very easy to
write a bad C++ code. Another, objective, reason,
sometimes called a burden of abstraction, is that ordinarily
overloaded operators are defined in such a way that they
create a temporary out of binary operation whenever more
operations are present in the expression. For example,
adding 3 vectors together, a = x + y + z; will create temp1
= (y + z) with one looping over indices performed. Then
it will calculate temp2 = x + temp and assign a to temp2.
One can easily see that we can get rid of at least one
temporary and one loop if we just loop through all 3
vectors together. In our previous work (see [5]), we have
shown how to overcome this burden: by using of
expression templates (ET). ET makes addition/subtraction
and multiplication/division by a scalar as fast as hand-
coded C and speeds up these operations by an order of
magnitude!

Another common technique, reference counting, allows
safe copying via pointers, which saves enormous time,
whenever assignment or copying in and out of functions is
performed (see [5]).

Unfortunately, these methods do not contribute much to
efficiency of multiplication of DA vectors. Typically, DA
calculations deal with 6-dimensional maps in 1 to 12
orders. This implies very long vectors and situations
when to obtain a product of 2 vectors, compiler has to
perform half-a-million elementary multiplications
between double numbers is not uncommon. This poses a
task of speeding up multiplication and operations using it
(powers). Note that solution to this problem almost does
not depend on the choice of programming language.

We discovered several techniques useful for
optimisation of multiplication. One is optimisation of
multiplication tables, as we described in [5]. For the sake
of completeness, we will remind how it is done in the next
section. Then we will comment on effects of
programming style on efficiency.

3.2 Optimisation of Multiplication Tables

Once the order of monomials in DA vectors is set, one can
obtain the multiplication table by looping through the
index of the first factor (external loop) with the internal
loop running through the index of the second factor. For
each pair there is an integer that corresponds to the index
of the product to which this pair contributes. For
example, lets multiply two second order 2-dimensional
DA vectors:

c = a*b;
a=a0+a1*x+a2*y+a3*x*x+a4*x*y+a5*y*y=

379

Proceedings of the 1999 Particle Accelerator Conference, New York, 1999

{a0, a1, a2, a3, a4, a5}};
b=b0+b1*x+b2*y+b3*x*x+b4*x*y+b5*y*y=
{b0, b1, b2, b3, b4, b5};
c ={c0,c1,c2, c3, c4, c5}.

The multiplication table can be easily found by
multiplication of polynomials):

ip if1 if2
0 0 0
1 0 1
2 0 2
3 0 3
4 0 4
5 0 5
1 1 0
3 1 1
4 1 2
2 2 0
4 2 1
5 2 2
3 3 0
4 4 0
5 5 0

To obtain the product c with this table, one has to go
through the table and perform 3 lookups for each step:
 for(int i=0; i<table.length(); ++i)

 c[table[i][ip]]+=a[table[i][if1]*b[table[i][if2];

Such naïve approach leads to pretty slow multiplication.
One can improve the speed by reorganising the table in the
following way. First, let us split it into symmetric and
asymmetric parts. Symmetric table has if1 = if2 with
these indices being simply incremented in the table, while
the product index is still to be looked up. Then, in the
asymmetric part, we leave only lines where the first factor
is smaller than the second (this leads to getting almost a
factor of 2 of speedup). For our example, we obtain the
following symmetric table:

ip if1 if2
3 1 1
5 2 2

and 2 asymmetric tables:

ip if1 if2
1 0 1
2 0 2
3 0 3
4 0 4
5 0 5

ip if1 if2
4 1 2

One can see that to obtain the product, one has to loop
through the symmetric table adding a[if1](b[if1], where
if1 does not have to be looked up. Then one goes through
all asymmetric tables, adding a[if1]*b[if2]+a[if2]*b[if1].
The number of lookups can be reduced even more, if one
notices that each asymmetric table has the first index
equal to the number of the table i (starting from 0), while
the second index can be found by incrementing an integer
initially equal to (i+1). As a result, there will be only one
look up for each row of the table, instead of 3.

3.3 Programming Style

When we compared different approaches to DA
implementation, we discovered that general programming
style makes a big difference in performance. One should
try to avoid lookups, dereferencing, if-statements. Thus,
we discovered that pointer arithmetic is faster than
operating with dereferenced arrays, so that the following
code:
 double* xPtr = x[0];

 double* xEndPtr = x[5];

 double* yPtr = y[0];

 double* aPtr = a[0];

 while (xPtr<xEndPtr) {

 *a = *x + *y;

 a++; x++, y++;

 }

is faster than:
for(int i=0;i<a.size;++i)

 a[i] = x[i] + y[i]

We used pointer arithmetic in the numerical
implementation of multiplication combined with
optimisation of multiplication tables, as described above,
to obtain pretty good results. Our multiplication is 5-8
(depending on platform and compiler) faster than other
C++ codes. This is shown on Fig. 1.

Figure 1: DA multiplication time for DA versus the
number of primitive multiplications of real numbers.

DA multiplication

0.0E+00

5.0E-02

1.0E-01

1.5E-01

2.0E-01

2.5E-01

3.0E-01

3.5E-01

4.0E-01

0.0E+00 1.0E+05 2.0E+05 3.0E+05 4.0E+05 5.0E+05

double multiplications

C
P

U
 t

im
e

LEGO

ZLIB

TXDA

380

Proceedings of the 1999 Particle Accelerator Conference, New York, 1999

4 FUTURE DIRECTIONS FOR
OPTIMISATION

4.1 Optimisation for Cache

In our studies of multiplication, we noticed that CPU time
taken by one multiplication of DA vectors grows linearly
with the number of elementary scalar multiplications up to
a point where it changes its slope (see Fig. 1). Such
behaviour is a typical manifestation of cache problems.

Cache is a small fast memory holding recently accessed
data, designed to speed up subsequent access to the same
data. All data requested by the program is fetched into
cache and stays there until it is flushed by new data.
Cache operates on presumption of spatial and temporal
locality: it expects that the data requested by the program
will be used soon again, as well as data close to the
requested. Hence, data is cached in memory lines, which
are typically larger then the specifically requested data.
The access for main memory is much slower than
accesses to cache. Thus, when the size of the data needed
to perform a multiply reaches a certain size, the
calculation slows down, because of accesses to main
memory rather than cache. This fact was noticed by
computer scientists optimising multiplication of matrices.
A special technique “blocking” (sometimes also called
“tiling”) has been developed (see [6]). It divides matrices
into blocks with sizes optimised for particular cache size,
so that the operations are able to reuse data staying in
cache. We can not directly take this idea since we deal
with the multiplication table and different objects. But we
will reorganise the multiplication tables into subtables, so
that the indices of each subtable stay close to each other
within some blocking size. The optimal size will depend
on the platform. The idea to efficiently utilise the
memory hierarchy is natural, because while the speed of
processors has been increased rapidly, it has not
accompanied by a similar increase in the memory speed.

4.2 Optimisation of low-order DA’s

In the case when the order of the DA is low (1 or 2), the
multiplication table looks particularly simple. We will
provide a special version of the library for such cases,
which will be used in automatic differentiation.
Templating over order permits the definition of special
cases.

4.3 Optimisation of powers

These operations will not be implemented in terms of
multiplication operator, but rather on a lower level
(similar to multiplication), because explicit use of the
symmetry of the factors in the product will be
advantageous for speed. Thus, instead of x8 =
x*x*x*x*x*x*x*x one should make compiler do
(x4)*(x4).

5 CONCLUSIONS
We have developed a prototype of C++ library for
Differential Algebra, which has a potential to become the
most efficient C++ library. It has expression templates for
efficient addition/subtraction and multiplication/division
by a scalar. It has reference counting for safe and rapid
copying, whose speed does not depend on the length of
vectors. Implementation of multiplication uses optimised
multiplication tables and is free of parasite operations.
The resulting speed of our classes is 5-8 times faster than
other C++ libraries. The classes are polymorphic, so that
we can have DAVector<double>, DAVector<complex>
for normal form analysis, or even
DAVector<DAVector<complex> for determining
parameter dependence of dynamics parameters. In
addition, our classes are templated on dimension and order
(we did not discuss this in the paper), which allows for
aggressive compile time optimisation and adds to
efficiency. We hope that in the nearest future we can
further develop the library by testing our ideas of
optimisation for cache. We will have to add elementary
functions and all needed operators in DA vector class,
create the map library including normal forms,
symplectification and Lie factorisation.

6 REFERENCES

[1] M. Berz, “Differential Algebraic Description of Beam Dynamics to
very High Order,” Particle Accelerators, 24, 109 (1989).

[2] A. Dragt and M. Venturini, “Design of Optimal Truncated Power
Series Algebra. Routines: II. Computing Sums and Ordinary and Lie
Polynomials Using Monomial Indexing and Linked Lists,” University
of Maryland, Sept. 1996 (Draft).

[3] M. Nelson, C++ Programmer Guide to the Standard Template
Library (IDG Books Worldwide, Foster City, CA, 1995).

[4] G.Furnish, “Container-Free Numerical algorithms in C++,”
Computers in Physics, v.12, No 3, 258(1998).

[5] John R. Cary and S. G. Shasharina, “Efficient C++ Library for
Differential Algebra,” Proceeding of European Particle Accelerator
Conference, Stockholm 1998.

[6] M. S. Lam, E. E. Rothberg and M. E. Wolf, “The Cache
Performance and Optimisation of Blocked Algorithms,” Proceedings of
the Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems, April, 1991.

381

Proceedings of the 1999 Particle Accelerator Conference, New York, 1999

