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Abstract

The recombination, transfer and injection of the four beams from
the PS Booster to the PS Main Ring, have a high level of intri-
cacy and are a subject of permanent concern for the operation
of the PS Injector Complex. These tasks were thus selected as
a test bench for the implementation of a prototype of an auto-
matic beam steering system. The core of the system is based on
a generic trajectory optimizer, robust enough to cope with imper-
fect observations. The algorithmic engine is connected to pick-
up monitors and corrector magnets and its decision can be val-
idated by the operator through a graphics user interface. Auto-
matic beam steering can only be ef®cient if the beam optics is
fully con®rmed by experimental observations, a conditionwhich
forces the systematic elimination of errors both in hardware and
software.

I. INTRODUCTION

Automatic steering in the PS complex has ®rst been imple-
mented in the transfer line TT2 which connects the 26 GeV syn-
chrotron (PS) to the 300 GeV synchrotron (SPS). In this line, the
beams have indeed to be carefully aligned [1] on secondary emis-
sion grid monitors for the precise measurement of the emittances
which will be required for the Large Hadron Collider (LHC). The
test revealed that the operation is considerably alleviated when it
is aided by an ªintelligentº software module and that the machine
is fully reliable when the instrumentation and the correction sys-
tems respond as predicted by the classical theory of strong focus-
ing machines [2]. In the context of the preparation of the PS for
the LHC, the automation of various beam manipulations is the
objective of the ABS project whose acronym stands for Auto-
matic Beam Steering and Shaping. Among the numerous appli-
cations which are planned, priority has been given to the transfer
from the 1 GeV booster (PSB) to the PS.

The physics process is schematically represented in Fig. 1.
The beams circulating in each of the four booster rings are
sequentially ejected towards individual transfer channels then
merged in a common line [3] and ®nally injected into the PS.
If no correction is applied, the momentum vectors of the four
beams are different at the entry to the PS, the beams oscillate
about the PS closed orbit and the beam emittances are degraded.
The task of the corrections on the booster side consists of making
the momentum vectors collinear. Once this is achieved, the com-
mon momentum vector is oriented tangent to the PS closed or-
bit by the PS injection system. The problem is much more com-
plex than the simple alignment of a beam in a transfer line but the
same correction architecture can be maintained if a generic pro-
cedure has been de®ned. The data acquisition whether it comes
from SEM grids or electrostatic pick-ups is the same, the correc-
tion algorithm has always to solve a linear system, the graphics

interface is customized to the machine but its design is standard;
the various modules are written in C or in Mathematica [4].

Figure 1. Transfer from PSB to PS

II. SYMBOLIC BEAM OPTICS
A. Machine modeling

The model of a machine is given by general purpose programs
which can be numerical like MAD [5] or symbolic like BeamOp-
tics [6], a package which will be included in the PS control sys-
tem as soon as a data base containing the various characteristics
of the machine components is available. Some technical aspects
of the application of symbolic computing to beam optics are re-
ported elsewhere [6]. It will only be said here that functionali-
ties such as list processing, pattern recognition, object orienta-
tion through functional programming and linkage protocols in a
UNIX environment have been found very ef®cient to write con-
cise codes and integrate them in an existing control system.

B. Linear solver

Once the theoretical model of a machine is known, its adapta-
tion to real experimental conditions resorts to perturbation tech-
niques, the ®rst order perturbations being by far the most fre-
quently used. This is precisely the case of beam steering but also
of tune adjustment, chromaticity, beam shaping in a ®nal focus
or geometrical aberrations. A ®rst order perturbation is linear
in the sense that the total perturbation is the sum of all the in-
dividual perturbations whether the perturbation is due to a dipo-
lar, quadrupolar, sextupolar or any type of ®eld. A primary ele-
ment of generality is thus to get a linear solver which can be used
for any kind of problem. The Micado algorithm [7] has been se-
lected for this purpose and its main features are brie¯y summa-
rized.

The algorithm solves a linear system iteratively in the pres-
ence of experimental errors or even breakdowns of the instru-
mentation or of the correcting elements. It consists basically of
minimizing iteratively the norm of a residual vector

r = Ax+ b (1)
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using a least squares method. b is a vector whose n components
are the errors to be corrected, x is the correction vector which
collects the m strengths to be applied to the correction magnets
and A(n;m) a matrix which represents the response of the beam
to a set of correcting ®elds.

At each iteration, the ®rst best magnet that yields the lowest
residual r.m.s. distortion at monitor positions is selected and ap-
pended to the corrector set. Then, the residual distortion is re-
analyzed and the next best magnet selected. All correctors from
the previous iterations are kept but their strengths are recalcu-
lated. The method proceeds until the residual r.m.s. distortion is
comparable with measurement errors.

The various steps of the calculation at the k-th iteration are:
1. Compute the corrector strengths as

x(k) = �
�
A
(k)T
i A

(k)
i

�
�1

A
(k)T
i b (2)

for all possible sub-matrices A(k)
i of A.

2. Compute the norm of the residual vector r(k)i as
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3. Select the corrector which minimizes the norm of the resid-
ual vectors
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The method is fast and converges with a small number of cor-
rectors. It has been coded as a Mathematica package.

III. SPECIFIC ASPECTS OF BEAM STEERING

The theory of beam steering is well known for circular ma-
chines and transfer lines. However, hybrid cases occur when the
position of the beam in a transfer line is modi®ed by closed orbit
distortion in an accelerator or when several transfer lines share a
common section.

A. Transfer line

The correction of beam trajectories in transport channels re-
quires a single trajectory measurement: the measurement vector
is b = fuigi=1:::n, where ui is the beam position at the i-th pick-
up. The components of the correction matrix A yield the trajec-
tory deviations at the i-th pick-up due to a unit kick at the j-th
corrector. For a transfer line, they are given by

aij =

� p
�i�j sin(�i � �j) if �i > �j

0 if �i � �j
(5)

where � and � are the classical �-function and phase function.

B. Closed orbit

In a ring, the orbit distortionmust satisfy cyclic boundary con-
ditions and the expression of the matrix elements is

aij =

p
�i�j

2 sin�Q
cos(��Q + j�j � �ij) (6)

where Q is the machine tune.

C. Combined closed orbit and transfer line

When the correctors of a circular machine affect the beam po-
sitions in an ejection line through a distortion of the ring closed
orbit, the middle M of the fast extraction kicker is taken as a
hinge point. The transfer matrix from the corrector to the pick-up
is then the product of the closed orbit transfer matrix from cor-
rector to M and of the channel transfer matrix from M to pick-
up. After calculation it turns out that the expression of the cor-
rection coef®cients is formally the same as for the closed orbit
correction (Eq. 6) when the origin of the phases is taken at the
point M .

D. Multiple transfer

When several transfer channels are connected to a same beam
line the observations in the common channel are distinct for each
beam whereas the common correctors act on all the beams. This
situation is tackled by de®ning two correction matrices per beam:
one, calledA(k) is attached to the individual correctors; the other
one, A(c) concerns the common correctors and is the same for all
the beams. The global correction matrix can thus be written

A =

0
BB@

A(1)
0 : : : 0 A(c)

0 A(2) : : : 0 A(c)

: : : : : : : : : : : : : : :

0 0 : : : A(N) A(c)

1
CCA (7)

E. Two-turn injection

The coherent oscillations at injection may be corrected using
two successive single turn trajectories measured shortly after in-
jection and two correction magnets per plane [8].

The trajectory position at the i-th pick-up in machine turn
number t can be expressed as

ui;t = zi + a
p
�i cos (�i + ' + 2�(t � 1)Q) (8)

in which zi is the closed orbit position at the i-th pick-up. The
two unknowns of the problem are the coef®cienta and the con-
stant phase '.

The closed orbit is eliminated by taking the trajectory differ-
ence between two successive turns. The result takes the form of
a classical betatron oscillation after division by 2 sin�Q.

ui;t � ui;t+1

2 sin�Q
= a

p
�i �

cos (�i + '+ 2�(t� 1)Q+ �(Q � 1=2)) (9)

The measurement vector b in Eq. 1 is thus

b =

�
ui;t � ui;t+1

2 sin�Q

�
i=1:::n

(10)

and the correction matrix A is calculated using Eq. 5.
When the tune is unknown, the method can still be used: the

Mathematica function which selects the best correction magnets
and computes their strengths, searches in addition for the tune
value Q which yields the minimum value of the norm of the
residual vector.
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IV. EXPERIMENTAL CORRECTIONS
A. Graphics user interface

For the operational application programs, standard graphics
user interfaces have been integrated in the control system. Once
the beam positions have been acquired and displayed, the oper-
ator can validate the measurements and choose the procedure of
correction. The C program of the interface is connected to the
Mathematica steering algorithm via the two way MathLink pro-
tocol. The development of the algorithm and its linkage to the
control system are fully de-coupled.

An example of the organization of the interface is shown in
Fig. 2 for the PS injection. The screen contains the display of
the beam positions, the input to the correction algorithm and the
calculated currents ready to be sent to the correction power sup-
plies.

Figure 2. Graphics user interface for the PS injection

B. Correction of trajectories at PSB ejection

The procedure to correct the ejection trajectory of the PSB
beam uses two dipoles in each ring and one steering magnet in
the transfer line. For the vertical plane there are additional steer-
ing elements for the vertical recombination of the four rings.
Downstream from the recombination point, the four beams are
corrected in both planes to be aligned at the ®rst PS injection
steering element.

The automation of the ejection process did not converge when
it was ®rst applied. A systematic error tracing was then carried
out and a major system de®ciency was found to be the misalign-
ment of the pick-ups with respect to the quadrupole axes. The
measurements were ®ltered to take that misalignment into ac-
count and the correction became ef®cient. The position errors in
each channel have typically been reduced to 2 mm after correc-
tion.

C. Correction of coherent oscillations at PS injection

The procedure has been implemented at the PS machine for
the protons. The two-turn trajectories are observed with 40 pick-
ups in each plane and there are two corrector magnets per plane.
The performance of the correction procedure is closely related
to the beam instrumentation. The quality of the observations has

been tested by comparing the experimental calibration factor of
the correctors with their values deduced from magnetic measure-
ments. As soon as the agreement between the two determina-
tions of the calibration factors had been obtained, the correction
of the coherent oscillations became reliable and the residual am-
plitude was of the same order as the errors in the injection line.

V. CONCLUSION
An automatic beam steering procedure has been successfully

implemented for the correction of the PSB ejection trajectories
and of the coherent transverse oscillations at PS injection. Cen-
tral in the project is symbolic computing whose resources had not
yet been thoroughly investigated for accelerator controls. Com-
puter algebra which is the best known aspect of symbolic com-
puting is a classical tool in theoretical applications and any al-
gorithm produced with this technique can be made available for
the machine operation without any delay. At the controls level,
the list processing, pattern recognition and object orientation via
functional programming used to treat mathematical expressions,
®t the communication with equipment modules, graphics user in-
terfaces or data bases. The experience gained on automatic beam
steering in a special context will therefore be extended to other
domains of the PS operation.
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