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Abstract 
An FFAG synchrotron differs from a synchrocyclotron 

by having a large radial field gradient; this large gradient 
greatly reduces the magnet volume while maintaining stable 
orbits for all energies, but it does induce substantial 
nonlinearities. A decade ago, the author proposed a 
dispersion-free insertion for an FFAG that provides regions of 
small volume for rf cavities, strippers, and injection and 
extraction elements, similar to a normal synchrotron.’ Here 
we exploit this insertion to provide compensation of the lower 
order nonlinear driving fields, thereby greatly increasing the 
dynamic aperture as compared to an FFAG without insertions. 
The correction fields may be programmed to track the 
momentum or may be static, providing full compensation at 
the injection energy. 

I. INTRODUCTION 

The proposed European spallation source requires an 
accelerator that can deliver 5 MW protons to the spallation 
target in a short pulse. In order to deliver such a large beam 
power with acceptable losses, the accelerator should be dc with 
a high repetition rate. An FFAG synchrotron would appear to 
be an ideal solution? The inherent nonlinearities of an FFAG 
(e.g. cB%<R>L) overly limit the dynamic aperture for this 
application, particularly for compact and higher energy 
machines where the field index, k, is large. All essential 
resonances are strongly driven. However, if the FFAG were 
to have dispersion-free insertions, it would be feasible to place 
a number of correction elements within these insertions to 
compensate the limiting resonances. This would greatly 
increase the dynamic aperture. 

One of the very nice features of an FFAG is the 
capability of stacking a number of injected pulses to deliver 
the beam to the target at a much lower rate than the repetition 
rate of the accelerator. A problem with stacking at such high 
currents is the development of tails in the particle distribution. 
These tails, although stable, would be expected to lead to 
increased activation through scattering. With a dispersion-free 
insertion, it becomes feasible to add cooling to damp these 
damaging tails. 

One would normally expect the correction magnets to 
be programmed to follow the acceleration cycle (in the absence 
of a stacked beam), thereby providing the maximum dynamic 
aperture throughout that cycle. However, the dynamic aperture 
needed is greatest at injection, and the time spent at that 
energy is relatively long, particularly if adiabatic trapping is 
employed. So one could consider static correction elements 

optimized for the injection energy. As the energy increases, 
the total tune spread is reduced, and the amount of required 
correction is also reduced. This means that a dc correction 
may prove to be entirely adequate. 

Should a dc correction entirely within the dispersion- 
free drift not be adequate, then one could use the drift spaces 
immediately adjacent to the central dispersion-free drift space. 
In these drift spaces, there is dispersion, but the overall width 
of the beam is still relatively small. Multipole magnets placed 
in these drift spaces with small, but not zero dispersion, will 
result in a correction that changes with momentum. 

II. THE FFAG DISPERSION-FREE INSERTION 

The example shown in the 1983 paper on the insertion 
for an FFAG is very symmetrical. The central dispersion-free 
drift space is twice as long as the drift spaces at either end. 
As is the case with ~-27~ insertion for normal synchrotrons, it 
is possible to distribute the total drift space as de&d3 For 
example, it is possible to place all of the drift space, except 
what is needed between magnets, in the central dispersion-free 
portion. As we approach such a configuration, we are forced 
to increase the focusing strengths, and the amplitude functions 
vary more wildly, making it difficult to match the insertion to 
the remainder of the FFAG. An example of such an 
asymmetric insertion using rectangular bending magnets is 
shown in Fig. 1, where the Courant and Snyder beta functions 
and the dispersion are shown for one half of the insertion. 

H . 

Cost considerations will surely limit the number of 
insertions to three or so, and thus the periodicity will be low. 
This is acceptable because of the compensation. My first 
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approach was to start with a symmetrical insertion, adjust it to 
move all of the magnets toward the ends, add the FFAG 
section (60’ net bends at each end of the insertion for three- 
fold periodicity) and then try to combine the FFAG magnets 
and the end magnets to yield a machine with a total of 15 
radial bending magnets (no spiral), each of which is assumed 
to be superconducting, where the coil assemblies would be the 
major cost item. 

Recognizing that a scaling FFAG running at its space 
charge limit is, in reality, not scaling because of the self fields, 
and knowing that we have the compensation available in the 
insertions, there does not seem to be any reason to keep the 
FFAG portion of the machine at all. A fresh start would be to 
use the minimum number of magnets to achieve the linear 
solution, including the required net bend, aperture 
considerations, and betatron phase advances in the dispersion- 
free drift and then adjust the higher order field components to 
keep the tunes fixed and maintain the dispersion-free property 
of the insertion over the entire energy range from injection to 
extraction. 

III. DESIGN APPROACHES 

The first approach tried with the three-magnet 
symmetric lattice was to parameterize the .three general 
magnets and then obtain algebraic expressions for the tunes 
and the slope of the off-energy orbit at the plane of 
symmetry-all in terms of the particle rigidity, Having these, 
we would use an algebra-manipulating program to adjust the 
parameters such that the dependence on rigidity is eliminated. 

The second approach considered was to use an orbit 
integration program to simultaneously calculate the closed 
orbits and tunes about those closed orbits for several widely 
separated momenta and to fit the magnet parameters to 
minimize (eliminate) the differences with momenta. 

The third approach, which is relatively simple, is to 
solve the linear problem with a matrix program with good 
online graphics and then use Martin Ben’s code, COSY 
INFINITY? to extend the solution systematically to higher 
and higher orders in Ap/p. This is the approach adopted. 

My version of the LATTICE code was used to adjust 
three gradient magnets with normal entry and exit to achieve 
the desired tunes and the desired dispersion-free drift space, 
subject to minimizing the maxima for the Courant and Snyder 
beta functions. The bends in the three magnets were arbitrarily 
chosen to be 10” in, 20’ out, and 70’ in, respectively, for a net 
bend of 60”. The three gradients and the magnet locations 
were adjusted by the code to meet the specified conditions. 
Although this approach suffices to show the feasibility of the 
method, one would want to consider different bending angles 
and the use of edge angles and, perhaps, edge curvature in a 
real design. Separating the big bend into two magnets, 
perhaps with reverse “gulley” fields is another consideration. 
Once a solution has been obtained, LA?TICE can be instructed 
to write an input file for the COSY INFINITY code. An 

example, which is by no means optimized, is shown 
2. 

in Fig. 

The COSY INFINITY code reads the LATTICE deck 
and produces the same linear results. The next step is to have 
COSY INFINITY adjust the radial second derivatives of the 
magnet fields to obtain zero chromaticity and zero second 
order chromatic dependence of the displacement of the closed 
orbit in the dispersion-free insertion. 

Extending the solution to other momenta requires that 
we expand each of the linear matrix elements in a power series 
in the displacements, slopes, and relative momentum shift, 
However, by starting the sector at the center of the dispersion- 
free drift space, the displacements and slopes at that point are, 
by definition, zero. This is an important point because we thus 
need only consider the pure chromatic derivatives. Moreover, 
because of the symmetry of the lattice, the Courant and Snyder 
a functions vanish at the center of the dispersion-free drift 
space. Thus, in order to achieve a dispersion free drift space 
with fixed tunes over the entire range of momenta from 
injection to extraction, we need to achieve the following 
conditions: 

an%1 * a%33 _ 0; an&M () 
-F= ; w dPR= ; 

n=1,2,3,4,... 

Here, the Mii are the matrix elements in TRANSPORT 
notation. 

Then, systematically, COSY INFINITY is set to 
calculate to the next higher or&r and requested to zero the 
pure chromatic derivatives at that order by optimizing the next 
higher order radial derivative of the magnetic fields. This 
process is repeated until we are sure that the order for which 
we have full correction is adequate for the total momentum 
spread to be accommodated (injection through extraction). 
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The procedure can be written as follows: 

a24 =* M 
ax2 116 =o; iY336 =o; Ml66 =o; 

a34 =+ jy 
ax3 1166 =o; Jf3366 = 0; Jf,,,,=o; 

a% ~ &f 
ax4 11666 =o; M33666=o; M1,,,,=O... 

Here, the index k represents the three (or more) different 
bending magnets whose field we have at our disposal. We 
have this flexibility because we have dropped the requirement 
that the field scale with CR>‘. Having the field and its radial 
derivatives, we can, of course, obtain its radial profile. The 
solution, which yields fixed tunes and dispersion-free drifts 
through the fifth order in the relative momentum shift is: 

(;)2-144(-i;x) - 

-785(;r+5JE4(;)5+... 

$l+1.4;+3.7(;)2+7.5(;) 
0 

+12($-17 .3(;r+... 

Three Magnet Dispersion-free Cell Field 
Relative Magnetic Field (from COSY INF) 

(delta PVP 

- Ml - M2 - M3 

example, which is by no means optimized, has a circumference 
of 106.1 meters and radial and vertical tunes of 2.25 and 2.30, 
respectively. The floor plan for this ring is shown in Fig. 4. 

,,(D- Ph..d..-, a- 

The magnets close to the dispersion-free straight section are 
small, whereas those well away from the insertion are large 
because of the dispersion there. 

The solution sequence can be modified so that COSY 
INFINITY determines the multipole components for the 
corrections magnets after the corresponding components for the 
bending magnets have been determined. This is yet to be 
done. 

We have created a simple ring with fixed fields that 
contains a wide momentum range of 3:l from injection to 
extraction with fixed tunes and dispersion-free insertions. The 
multipole correction magnets in the insertions can correct 
several resonances thereby providing a large dynamic aperture, 
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When graphed over the magnet region used by a momentum 
range of 3: 1, the field profiles are as shown in Fig. 3. This 
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