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Abstract 
An analytical approach to calculate the incoherent tune 

shift in the presence of non-linear space charge forces is de- 
scribed in this paper. Closed form expressions to evaluate 
the dependence of the space charge detuning on betatron 
amplitude have been derived previously for a beam of ellip- 
tic cross section with Gaussian distribution in transverse 
dimensions, under the condition that, each particle has the 
same momentum. The present computation considers in 
addition the dependence of the space charge detuning on 
momentum, for a beam with Gaussian momentum distri- 
bution. Two effects are taken into account for an exact 
calculation: the widening of the beam due to momentum 
spread and the variation of the tune shift with the longi- 
tudinal position in the bunch. Application to the present 
high intensity beams in the CERN PS machine and to the 
foreseen beam for LHC is discussed. 

I. INTRODUCTION 
The understanding of the space charge effects is of pri- 

mary importance for low energy circular accelerators and 
storage rings especially for beams of high intensity and 
bright,ness as required for the LHC [I]. Theoretical models 
which permit reliable numerical simulation are desirable 
to analyze the beam behaviour. An analytical approach to 
calculate the incoherent tune shifts in circular accelerators 
and storage rings in the presence of nonlinear space charge 
forces is described hereinafter. The model takes into ac- 
count the dependence of the space-charge induced detun- 
ing on betatron amplitude and momentum, for a beam 
with Gaussian distributions in transverse dimensions and 
momenta. 

II. EQUATIOKS OF MOTION 

In a linear lattice the synchro-betatron motion for a 
charged particle in the presence of space charge forces can 
be derived from the Hamiltonian [2] 

ff(x, i’, 0, Px, Pz 1 PO) = 
eU(x ,tto) PZ 

m0c2B2y +25.? 

(1) 

def in which I, p,, Z, p,, gdg’ s--/M, p, = aE/,02E describe 
the synchro-betat,ron oscillations, s is the arc length, E is 

the total energy of the particle and /?, y the relativistic 
parameters. IJ(z, i, g) is the pot,ential generated by the 
beam, gz,r is the quadrupole strength, Ii,,, the curvature 
of the reference orbit,, L its length, V(s) and +Z are the 
accelerating field and the phase, h the harmonic number, 
mo and e the rest, mass and the charge of the particle. 

The off-momentum trajectory rnay be placed at the cen- 
ter of phase space by means of a canonical transformation 
with generating function [2] 

~2(~,~,~,2%.,I5,,13~) = 

&(x - D,A) + @,(r - D,A) + (DLX + Di%)A 

-(DkD, + Dln,)$ + pou (2) 

where A dAJ Ap/p is the momentum deviat,ion, D,,, is the 
dispersion function and a prime implies differentiation with 
respect to s. The transformation equations lead t,o the 
known expressions 

e=y-D,A & = py - D;” (3) 

C=a+ 1-k (-DzjT-D,&+D;5+D~2) (4) 
( -1 Y2 

and &=P~, where y stands either for x or Z. Assuming 
that there is no dispersion in the cavities (V(s)DY = 0, 
V(s)Db -0) and using the “oscillator model” for the syn- 
chrotron motion [2], with expansion of the cosine term to 
the second order, the Hamiltonian reduces to 

H(Z, 2, @!fil,fii,L?) = 
el:(Z, i, 5) 

711oc2iFy 
+ ;p; 

-; (!?a2 +gz2 +p2. +pT) + jg”2 (5) 

where q= l/y2--cup is the phase slip factor, with the mo- 
mentum compaction factor and the synchrotron frcquencq 

1 ao+L 
Q P=z 

J 
(Ii, D, + Ii, D,) ds (6) 

$0 

s22 = 2nhqc2 cos p sO+L 
0 EL? s 

eV(s)ds (3 
sll 

We introduce the action-angle variables T,,,,,, IJ,,,,, 

and fz,,,,, ~,,,,, use two consecutive canonical transfor- 
mations, transforming first Ii into Ii and then I\* into I:, 
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with generating functions [2] 

-~(n,+tan~,)-~(n,+tanh) (8) 

Then the equations of motion can be written as 

(9) 

f= dmcos*y fiy = - 
‘21y 

\i 
P( 

aycos tiy + sin &) 
Y 

(10) 
with 

jy = Iy (11) 

in which R= L/~T, y now stands either for x, z, or 6, and 
F;, = F, = 1, F, = 0. The Hamiltonian I? after substituting 
the transformed variables becomes 

r,Qz: fzQ, 
qLL,~cr,~z,4,,12,, = R + R 

+ &Qa 
--F+ moc~,27u(t,~*,~~,~~,~~,~~) (12) 

Using perturbation theory a final canonical transforma- 
tion to new action-angle variables I,,,,, and q2,z,4 may 
be further applied so that to first order the transformed 
Hamiltonian z is the average of the old Hamiltonian k 
over the old angle variables [2]. Moreover, assuming that 
the disturbing potential is small, the new action variables 
may be replaced by the old ones so that the transformation 
equation for the angle variable is 

4; -g- - 2 ; a(v) eF, 
m0c2P2y IYI, (13) 

Y 

where the average is taken over both the Gz,z,, and s. 

III. SPACE CHARGE POTENTIAL 
Bunched beams of ellipsoidal shape with half-dimensions 

a, b, c defined as fi times the r.m.s. beam sizes uz, flz , 
(r,, and with Gaussian charge density in the ellipsoid 

Nbe e(x, 2, u) = ~ x2 22 u2 
$/2abc exp ----_- 

a2 b2 c2 (14) 

yield non-linear space charge forces generated by the scalar 
potential [3] 

AQy = 
eRFy W) 

moc2B2rQyC 89 

U(x,z,a) = - Nbe 
47r312QJy2 

03 1 - exp 
X J ( -&-&-&& > 

da2 + t)(b2 + ~)(Y~cc + t) 
dt (15) 

0 

where Nb is the number of particles per bunch and EO the 
dielectric constant of vacuum. The effects of image fields 
due to the conducting vacuum pipe have been ignored. 

Combining Eqs. 3-4 and Eqs. 10-11, and considering the 
“smooth approximation” _Py M R/Q, and p0 M qR/Qo 

gives, replacing qz,z,, by $z,t,, to first approximation 

y = yjcos7+by - DyAssintiy (16) 

u = 5 cos 4, - fi,Q,&sin$r - fi,Q,isin$t (17) 

in which 6 = dm, 6 = ,/wti, ii = Q,ci/qR 
denote the amplitudes of the synchro-betatron oscillations, 
DY is the mean dispersion function. Then, expanding 
!Y(x, z, c) in series and using the above expressions yields 

%2 

cos Go - 0, Qz? sin $, - 0, Qz i sin $= ‘j’ 
X 

Rc 
U 

(18) 

with the elliptic integral 

J(jl,hTj3) = 

J 
30 dt 

o (I+ $)jltt(l+ ci)jz+d(l+ +.$t)j,++ (19) 

When t,he longitudinal dimension of the bunch is much 
larger than the transverse dimensions, Eq. 19 may be ap- 
proximately evaluated using the recursion formulae [4] 

J(O,O,n)xln s 
( > 

2 

-2kL 
2i - 1 (20) 

i=l 

J(l> O,.i3) x --& (21) 

J(h) 0, j3) = 
a-(n-l)J(h-l,O,j3) 

(n- l/2)(&2- 1) (22) 

Jh > j2, j3) = 
a- 02(j1+1/2)J(j1+l,j2-l,j3) 

j2-l/2 
(23) 

where Q = b/a. Eqs. 21-23 are independent on js. 

IV. TUNE SHIFT FORMULAE 
Integrating Eq. 13 through one machine turn gives an 

additional phase advance which is identified with the space 
charge detuning 

(24) 

Assuming that the machine tune is removed from non- 
linear and coupling resonances Eq. 18 may be averaged in- 
dividually over the phase advances. The resulting calcula- 
tions yield a potential which depends only on the synchro- 
betatron amplitudes i, i, and A\. Hence, differentiating 
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this potential and inserting the result into Eq. 24 gives 
the betatron and momentum amplitude dependence of the 
incoherent tune shift. Thus, the horizontal space charge 
tune shift is 

A&2(2, i, h) = -AQo,z 

i+m 

’ (i+m)!(js-l-m)!(ja+k-I-m)!(j1+j2-i-k)! 

’ (jl+j2-li-k+C)! 

(~~(itm-l)(~~(j,+k-i-m) 

(25) 

in which 6 = Q,c/qR and AQo,z is the Laslett tune shift 
in the center of a Gaussian beam 

AQo,z = - 
kb Nb Rro 1 

(26) 
Figure 2: Tune diagram at the 1.4 GeV PS injec- 

TB~ QzP2-r3 Q(a + b) tion for the future beam for LHC. 

where Bf = kba,,/&hf is the bunching factor defined 
as the ratio of the mean to peak line charge density, kb 
being the number of bunches and ~0 = e2/47reomoc2 the 
classical particle radius. Expressions for the vertical and 
the longitudinal tune shifts can be written similarly. Eq. 25 
reduces to the Keil formula when c>> a, b and A = 0 [4]. 

V. RESULTS AND CONCLUSION 

The foregoing formulae have been applied at the 1 GeV 
injection into the PS to the present high intensity beam 
delivered to the SPS, and at the 1.4 GeV injection into the 
PS to the high brilliance beam required for the LHC [l] 

l SPS: 20 bunches of 101’ protons, 1 GeV, 55 ns long, 
la-momentum spread gA = 0.75x10W3, la-normalized 
emittances 6: z = 12.5,6.25 ,um’. 

l LHC: 8 bunches of 1.75~10’~ protons, 1.4 GeV, 190 ns 
long, la-momentum spread (TA = 1.25 x 10v3, la- 
normalized emittances 6; 2 =3.5,1.75 pm. 

Figures l-2 show the amplitude dependence of the space 
charge tune shifts for these two beams. The nominal tunes 
are Q ,,,=6.22,6.28. Calculations have been performed for 
amplitudes varying between 0 to 20Z,Z,A with the series ex- 
pansions pushed to the 15th order. The Laslett tune shifts 
are AQZY’. = -0.21,-0.30 and AQ57:=-0.18,-0.31. 

IThe beam half-dimensions are a = fi c: RIPrQz + D$;, 
b=fi ~;R/,&,Qr+ii;u; andc= d?qRoJQ,, Q,=R,R/Rc. 

Figure 1: Tune diagram at the 1 GeV PS injec- 
tion for the present beam for SPS. 

The betatron and momentum amplitudes having 
Rayleigh distributions [4], the mean tune shifts have been 
computed from Eq. 15 by averaging Eq. 24 over all the 
amplitudes using Monte-Carlo integration. The results are 
(AQ)~~~=-0.09, -0.13 and {AQ)iy;=-0.08, -0.13. Thus, 
the weighted average of the detunmg is less than half the 
Laslett tune shift. 

The tune diagrams QI-QZ for the LHC and the SPS 
beams look almost similar. Thus, by raising the PS input 
energy to 1.4 GeV the tune spreads of the LHC beam will 
be maintained at, the present limiting level. 
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