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An Exact Expression for the Momentum Dependence of
the Space Charge Tune Shift in a Gaussian Bunch

Michel Martini

Abstract

An analytical approach to calculate the incoherent tune
shift in the presence of non-linear space charge forces is de-
scribed in this paper. Closed form expressions to evaluate
the dependence of the space charge detuning on betatron
amplitude have been derived previously for a beam of ellip-
tic cross section with Gaussian distribution in transverse
dimensions, under the condition that each particle has the
same momentum. The present computation considers in
addition the dependence of the space charge detuning on
momentum, for a beam with Gaussian momentum distri-
bution. Two effects are taken into account for an exact
calculation: the widening of the beam due to momentum
spread and the variation of the tune shift with the longi-
tudinal position in the bunch. Application to the present
high intensity beams in the CERN PS machine and to the
foreseen beam for LHC is discussed.
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The understanding of the space charge effects is of pri-
mary importance for low energy circular accelerators and
storage rings especially for beams of high intensity and
brightness as required for the LHC [1]. Theoretical models
which permit reliable numerical simulation are desirable
to analyze the beam behaviour. An analytical approach to
calculate the incoherent tune shifts in circular accelerators
and storage rings in the presence of nonlinear space charge
forces is described hereinafter. The model takes into ac-
count the dependence of the space-charge induced detun-
ing on betatron amplitude and momentum, for a beam
with Gaussian distributions in transverse dimensions and
momenta.

II. EQUATIONS OF MOTION

In a linear lattice the synchro-betatron motion for a
charged particle in the presence of space charge forces can
be derived from the Hamiltonian [2]
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the total energy of the particle and 3, v the relativistic
parameters. U(z,z,¢) 1s the potential generated by the
beam, g. . is the quadrupole strength, K; . the curvature
of the reference orbit, L its length, V(s) and ¢ are the
accelerating field and the phase, h the harmonic number,
mo and e the rest mass and the charge of the particle.

The off-momentum trajectory may be placed at the cen-
ter of phase space by means of a canonical transformation
with generating function 2]
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where A%/ Ap/p is the momentum deviation, D, , is the
dispersion function and a prime implies differentiation with
respect to s. The transformation equations lead to the
known expressions
- DyA Py :py-D'yA

v=y (3)

6':0'+(lﬂp_;)(_Drﬁr_Dzﬁz+D;‘i+sz£) (4)
¥

and p, = p,, where y stands either for z or z.

that there is no r]lqnprmnn in the cavities (L”(c\n

Assuming
=0,

V(s)D, =0) and using the “oscillator model” for the syn-
chrotron motion [9] with expansion of the cosine term to
the second order, the Hamiltonian reduces to
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where n=1/y%~aq, is the phase slip factor, with the mo-
mentum compaction factor and the synchrotron frequency
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We introdice the action-angle variables I ; o, ¥z.0
and izyz,,,, 1[7',‘,'0 use two consecutive canonical transfor-
mations, transforming first H into K and then K into 1';',
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with generating functions [2]
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Then the equations of motion can be written as
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in which R=L/2r, y now stands either for z, z, or &, and

F,=F,=1, F,=7. The Hamiltonian K after substituting
the transformed variables becomes

with
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Using perturbation theory a final canonical transforma-
tion to new action-angle variables I_xyz_cr and 1/3;5,;,0 may
be further applied so that to first order the transformed
Hamiltonian K is the average of the old Hamiltonian K
over the old angle variables [2]. Moreover, assuming that
the disturbing potential is small, the new action variables
may be replaced by the old ones so that the transformation
equation for the angle variable is

i 6[_{ Qy

9, R

eF, o{U)
moc?B2y Ol (13)

where the average is taken over both the 1/;$,z‘g and s.

III. SPACE CHARGE POTENTIAL

Bunched beams of ellipsoidal shape with half-dimensions
a, b, ¢ defined as v/2 times the r.m.s. beam sizes 0z, Oz,
0o, and with Gaussian charge density in the ellipsoid

Nye
—T2ah ex (14)

yield non-linear space charge forces generated by the scalar
potential [3]
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where N, is the number of particles per bunch and ¢ the
dielectric constant of vacuum. The effects of image fields
due to the conducting vacuum pipe have been ignored.
Combining Egs. 3-4 and Eqgs. 10-11, and considering the
“smooth approximation” 8, ~ R/Qy and B, = nR/Q,
gives, replacing ¢x 2,0 by ¢x 2,0 to first approximation

y = costh, — DyAsint, (16)
0 =6costhy — D;Qrésiny, — D,Q,%sinv, (17
in which §=+/2,R/Q,, ¢ =/21,Q,/nR, A =Q,5/nR

denote the amplitudes of the synchro-betatron oscillations,
D, is the mean dispersion function. Then, expanding
U(z, z,0) in series and using the above expressions yields
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with the elliptic integral
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When the longitudinal dimension of the bunch is much
larger than the transverse dimensions, Eq. 19 may be ap-
proximately evaluated using the recursion formulae [4]
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where a=bfa. Egs. 21-23 are independent on ji.

IV. TUNE SHIFT FORMULAE

Integrating Eq. 13 through one machine turn gives an
additional phase advance which is identified with the space
charge detuning

eRF, (U}
My 02/827Qy ¥ 0y

Assuming that the machine tune is removed from non-
linear and coupling resonances Eq. 18 may be averaged in-
dividually over the phase advances. The resulting calcula-
tions yield a potential which depends only on the synchro-
betatron amplitudes #, %, and A. Hence, differentiating

AQy = (24)
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this potential and inserting the result into Eq. 24 gives
the betatron and momentum amplitude dependence of the
incoherent tune shift. Thus, the horizontal space charge
tune shift is
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in which § = Q,¢/nR and AQy  is the Laslett tune shift

in the center of a Gaussian beam
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where By = kso,/V2TR is the bunching factor defined
as the ratio of the mean to peak line charge density, k;
being the number of bunches and ry = e?/4megmoc? the
classical particle radius. Expressions for the vertical and
the longitudinal tune shifts can be written similarly. Eq. 25
reduces to the Keil formula when ¢3>a,b and A=0 [4].

V. RESULTS AND CONCLUSION

The foregoing formulae have been applied at the 1 GeV
injection into the PS to the present high intensity beam
delivered to the SPS, and at the 1.4 GeV injection into the
PS to the high brilliance beam required for the LHC [1]

e SPS: 20 bunches of 10'? protons, 1 GeV, 55 ns long,
lo-momentum spread oa =0.75x1073, 17-normalized
emittances €} , =12.5,6.25 pym'.

e LHC: 8 bunches of 1.75x10*2 protons, 1.4 GeV, 190 ns
long, lo-momentum spread oa = 1.25x 1073, 1o-
normalized emittances €; , =3.5,1.75 pm.

(26)

Figures 1-2 show the amplitude dependence of the space
charge tune shifts for these two beams. The nominal tunes
are @, ,=6.22,6.28. Calculations have been performed for
amplitudes varying between 0 to 20 , A with the series ex-
pansions pushed to the 15th order. The Laslett tune shifts
are AQ57=-0.21,-0.30 and AQ;"°=-0.18,-0.31.

1The beam half-dimensions are a =

V2\/€tR[B~+Q + D203,
b=V2\/e2R/37Q. + D20% and ¢ = VZnRoa/Qo, Qs =QcR/Bec.
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Figure 1: Tune diagram at the 1 GeV PS injec-
tion for the present beam for SPS.
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Figure 2: Tune diagram at the 1.4 GeV PS injec-
tion for the future beam for LHC.

The betatron and momentum amplitudes having
Rayleigh distributions {4}, the mean tune shifts have been
computed from Eq. 15 by averaging Eq. 24 over all the
amplitudes using Monte-Carlo integration. The results are
(AQ);7P=-0.09, -0.13 and {AQ);"°=-0.08, —0.13. Thus,
the weighted average of the detuning is less than half the
Laslett tune shift.

The tune diagrams @Q,-@, for the LHC and the SPS
beams look almost similar. Thus, by raising the PS input
energy to 1.4 GeV the tune spreads of the LHC beam will
be maintained at the present limiting level.

VI. REFERENCES

(1] R. Cappi, R. Garoby, S. Hancock, M. Martini, N. Ras-
mussen, J.P. Riunaud, K. Schindl, H. Schonauer,
“The CERN PS Complex as part of the LHC injector
chain”, Proc. 1991 IEEE PAC, p. 171.

[2] D.P. Barber, H. Mais, G. Ripken, F. Willeke, “Non-
linear theory of coupled synchro-betatron motion”,
DESY report 86-147 (1986).

[3] K. Takayama, “A new method for the potential of a 3-
dimensional nonuniform charge distribution”, Lettere
al Nuovo Cimento, Vol. 34, p. 190 (1980).

[4] E. Keil, “Non-linear space charge effects I”, CERN
report ISR-TH/72-7 (1972).

3701

PAC 1993



