
Decoherence and Recoherence of Beam in Phase Space 

Jicong Shi and Sho Ohnuma 
Department of Physics, University of Houston, Houston, TX 77204-5506, USA 

Abstract (Jr, 41, Jz,&) are action-angle variables: 
Using the particle distribution in phase space, we in- 

troduce a new approach to study the decoherence and re- 
coherence of a kicked beam when betatron tunes are far 
from any resonance. With this method, the decoherence 
and the recoherence of a beam can be analyzed easily in 
both 2-dimensional and 4-dimensional cases with any form 
of the tune spread. We have also studied the decoherence 
of a beam initially trapped in a resonance island. Due to 
the tune modulation, the separatrix of island develops a 
chaotic layer and particles within the island can drift out 
of the island along the layer. Consequently, the beam de- 
coheres gradually. The rate of decoherence is shown to be 
proportional to the modulation amplitude. As a function 
of the modulation frequency, it reaches a peak near the 
tune of trapped particles before decreasing to zero. 

&s=#Jk = G./& (2) 

&Zsin4k = -fir; + &zk/ (2&J , (3) 

wherek = 1,2 and (or,+) denote(z,y). Uo(J)+U(f,&O) 
represents the nonlinear perturbation of which I7e( J) de- 
pends on f only and (V)J,~ = 0. The transverse distribu- 

tion of the beam particle f~($$, 0) satisfies the equation 

I. DECOHERENCE IN THE 
NEAR-LINEAR REGIME 

where [ ] is the Poisson bracket. Since the time scale we 
are interested in is much shorter than the diffusion time 
scale, as betatron tunes are far from any major resonance, 
we consider Ue only and Eq. (4) is reduced to 

In the presence of amplitude dependence of betatron 
tunes (tune spread), an off-centered beam will gradually 
dilute from a localized bunch to an annulus in transverse 
phase-space which results in a disappearance of coher- 
ent signal. Due to a finite energy spread, the beam may 
also oscillate between the localized bunch and the annulus 
which results in a periodic oscillation of the coherent sig- 
nal. These decoherence and recoherence of a kicked beam 
have been studied experimentally as well as analytically 
(1,2]. Previous studies based on a single-particle picture 
were however limited to quadratic amplitude-dependence 
of the tunes. Since the decoherence and recoherence are 
basically multiparticle phenomena, a more suitable as well 
as easier description should be based on a study of the 
particle distribution in phase space. In this note, we shall 
introduce this approach to study the decoherence and re- 
coherence. With our method, these phenomena can be 
analyzed in both 2 and 4-dimensional cases with any form 
of amplitude dependence of the tunes. 

$+ ,+!!$ .afT=o. 
[ I w 

The solution of this equation is easily found to be 

f&J,,) = fT TJ- pyT)dT - so,0 ( 1 
= fT(hm 

where f~(f, &O) is th e initial distribution and 

&Lp(T)dT-*~=6-1. (7) 
If the synchrotron motion is assumed to be linear, 

17 = V’O + f&jjLsin(u,@ + $L), (8) 

where {is chromaticity, (JL, 4~) the action-angle variable 
for synchrotron motion, and u, the synchrotron tune, and 

In general, the Hamiltonian of 4-dimensional betatron 
oscillations can be written as x’ = goe+z “($.)‘sin(!$) sin(u,8++L)+03. (9) 

H=t~J’+Uo(J)+U(&&e) ) (1) 

where t = (vi, vz) are betatron tunes, 0 the indepen- 
dent variable which is the path length of the cent& or- 
bit divided by the average machine radius. (J,4) = 

Let ~(JL,~L) d enote the beam particle distribution in 
the longitudinal phase-space. The beam centroid can be 
calculated from 

(&Zk+ if,; 
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~ee-‘4LfT(~b;, B)fL(JL, q5~)dfd&J~dqh~ 
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= 
J 

&&-i+b f& c$ - x’, O)fL(JL, $L)dc?dJdJLd+L 

= fie-i(4k+xk) 
J 

fT(J’,~,O)fL(JL,~L)dJ;l~dJLd~~ 

Jev (--iaJJ;Ssin$L) fL(JL,4~)d~At 

IFzexp [-i (& +0$)] fT(J’,&O)d.?d& (10) 

where k = 1,2. 
Assume that initially the beam has a Gaussian dis- 

tribution with its centroid located at (z,z’, y, y’) = 

( ~01, z& , ~02, .zh2) in the transverse phase-space, 

fd&&Oo) = fi(Jl,&)fz(Jz,h), (11) 

where 

fk(Jk, 4s) = & (12) 
k 

Jk+Jok-i?fi J OkcOS((bk - dOk)] }, 

and 

d%h’s d’Ok = zOk/&, (13) 

&sin $Ok = -I/i%& + &ZOk/ (2&i) (14) 

with Ic = 1,2. We also assume that the beam has a Gaus- 
sian distribution in the longitudinal phase-space, 

(15) 

Substitution of Eqs. (ll)-(15) into Eq. (10) yields 

( &e-“‘)jd = exp -i((bOk $ uOk6) - ff - s 

’ 

1 
xexp [-gsin’ (iv#@)] 

x--& JdJjIo (‘7) exp (-3) 

X 
J 

dJkfiI1 (“F)exp(-$+iog), 

(16) 
where Is and 11 are modified Bessel functions of order 0 
and 1 respectively. (IE, j) is any permutation of 1 and 2. 
After knowing the amplitude dependence of the betatron 
tunes, the time evolution of beam centroid can be obtained 
by integrating Jk and Jj in Eq. (16) analyticaNy or nu- 
merically. 

If we consider only the lowest-order amplitude depen- 
dence of the tunes: 

1 1 
U,, = -blJ,2 + bsJ,Jz + -bzJ,2, 

2 2 (17) 

the beam centroid is found from Eq. (16) as 

( -e-i*k)j-$ = [l + ( 2b 

ITk k 
,9)2$7( 

ff3 3 
?b 8)2]‘/2 

X exp Jok(ukh@2 Joj(qb3@2 - 
1 + (cr;bk0)2 - 1-t (crj”b36’)2 

x exp ‘$a; . 2 -- sin 
U,“PL 

exp (-i&k), (18) 

where 

&k(e) = &k + r’s& + 2 tan-l(b&) + tan-l(baajt9) 

Johe 
+ 1 + (c$bk8)2 

Jojbe 
+ 1 + (oj2b3c?)2’ (1% 

and (Ic,j) is any permutation of 1 and 2. The amplitudes 
of the beam centroid are thus 

h(e) = / ( &e-‘“k)iil 

= [l + (b;bk6)2] [l + (n;bs0)2]1’2 

x exp Jok(@h~)2 Joj(qW)2 - 
1+ (a;bk8)2 - 1+ (u;batY)” 

{ 
FZU: - 2 1 X exp -- sin 
U82PL ( )> 

-u,e . 
2 (20) 

If a’Uo/a_JjaJk = 0, i.e. the betatron tunes are inde- 
pendent of J, we have 

. (21) 

Eq. (21) shows that the coherent signal slowly oscillates 
with the frequence of the tune modulation u,. The smallest 
coherent signal occurs at l/(211,) turns with 

Ak 
After each l/us turns a coherent signal with original mag- 
nitude reappears. 

For a2Uo/aJjaJk # 0, Eq. (20) describes the decrease 
of magnitude of the coherent signal due to a finite tune 
spread. It shows that: 

1. The rate of this decrease is independence of u,. 
2. The larger the amplitude dependence of the tunes 

and the transverse beam size, the larger the rate. 
3. Since the oscillation part of Ak has a period of l/u, 

turns, for 

u; a2uo 
- - << 1, and 

I I 

2 a2uo 
us aJ,z I I 

- << 1, (23) 
Us aJj8Jk 
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the first minimum of & is around 8 = T/Y, and the next 
maximum is around 13 = 2x/v,. The ratio of the next 
maximum and first minimum is 

A k,maz [Vf + (?+k)2] [v; + (~+3)2]1’2 _ 
A k,min [v,” + (2 ?rU;bk)2] [v,” + (274b3)2] 1’2 

x exp 
3hk(Waflkbk)2 

-[vi + (2 ?rC$bk)2] [V: + (~C’;bk)2] 

3J&rz+qb3)2 
+( +“L 

- [v,2 + (27rcJ3b3)2] [v,2 + (m@,“] ZE 1 * 
(24) 

If this ratio is larger than 1, a weaker coherent signal will 
reappear after l/v, turns. 

II. DECOHERENCE OF BEAM IN A 
RESONANCE ISLAND 

Consider a beam kicked into a resonance island. If this 
resonance is isolated, and there is no tune modulation, the 
beam will be trapped inside the island “forever”. With 
a tune modulation, the separatrix of island develops a 
chaotic layer. Particles within this chaotic layer will even- 
tually drift out of the island along the layer. Consequently, 
the beam decoheres gradually. For a beam kicked into the 
neighborhood of the chaotic layer (part of beam overlap 
with the layer), more particles will drift out of the island 
once the layer becomes wider. If the drifting speed of par- 
ticles is assumed to be uniform within the chaotic layer, 
the rate of decoherence of the beam is proportional to the 
width of the chaotic layer. Therefore, by estimating this 
width, the decoherence rate of a beam in the island can 
be understood at least semi-quantitatively. Here we only 
consider the motion in x-x’ plane. 

As we consider a nth-order resonance, nuo = k, the 
Hamiltonian can be written as 

Ro = 6vJ + Uo(J) + h(J) cos(ndJ + $o), (25) 

where 6v = v - ve, 4s is a phase constant, and (J,#) is 
the action-angle variable of (X,X’). The tune modulation 
Sv = Svo + D cos(v,B) is treated as a periodic perturbation, 

H = [61/o + D cos(v,O)]J + &i(J) + h(J) cos(n$ + 40) 

= Ho + JD COS(V,~) (26) 
Near t,he resonance, the Hamiltonian can be expanded with 
(J - J,.) where J,. is the value of J for the resonance. Let 
t = no, T = U{(J,.)(J- J,.), wi = -U[(J,.)Ul(J,.), $I = 
n4 + do, and T, = J,U[(J,), the new Hamiltonian is then 

@T&t) = ;I2 - w; cos II, + D(T, + T) cos 

= .~~o+D(T,+T)coS :t . 
( 1 (27) 

This is the Hamiltonian for the pendulum with a periodic 
driving force. The motion in a vicinity of the separatrix 
can be described by the whisker map [3], 

Wnfl = ur,+Wsin$, 
$%I+1 = lCtn + Aln (32/1~+1 I> (28) 

2 4 6 8 10 

Figure 1: A as a function of Y,. 

where 
I& - wo” 

w, = 
4 

t X=2, 
wo 

2rru, D 
w = nwg cash [av,/(nwe)]’ 

The width of the chaotic layer is [3] 

* = w ii 
274 D 

xw = nwo cash [rr~~/(nw~)]’ (29) 

Eq. (29) shows that : 
1. The width of the chaotic layer, that is, the rate of 

decoherence is proportional to the modulation depth D. 
2. A takes the maximum value at the modulation tune 

v,” which is the solution of the equation, 

7rv,” -= 
nw0 

(30) 

u,” 1: - “,“wo = ; IU;(J,)u,(J,)+. (31) 

3. For Y, << 1, A oc vf. For vs + co, A - 0 (see Fig. 

1). 
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