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Abstract 

The following is an analysis of the confinement and sta- 
bility issues of a Crystal Beam. A method is described to deter- 
mine the equilibrium configuration of a beam of highly 
charged particles. It is required that the beam has a uniform 
distribution in the direction of motion, which is stable and does 
not need therefore confinement with external means. It is 
shown that this can be obtained only for a relatively longitudi- 
nally compact beam. Confinement in the plane transverse to 
the direction of motion is obtained with external means, which 
also provide stability. It is important that particles are distrib- 
uted so that the resulting space charge forces are linear with 
respect to the particle transverse coordinates. 

I. INTRODUCTION 

A Crystal Beam [l-3] is an ensemble of charged parti- 
cles, all identical to each other, with the same electric charge 
Qe and mass at rest Am, where e is the electron charge and 111 
the proton mass at rest. The charge state Q and mass number A 
are integer. Particles are treated point-like, with no internal 
structure, Only interaction among each other is the electromag- 
netic interaction. It is assumed that there is an equilibrium con- 
figuration where particles occupy a rigid position with respect 
to each other while all together move in one direction. Particles 
are allowed to oscillate around their equilibrium positions as 
long ;ts the amplitude of the oscillations is small. 

Confinement and stability questions are best described 
with the rectangular and infinite Crystal Beam model which is 
introduced in section II. We consider next the case of a cylin- 
drical beam, infinitely long in the longitudinal direction, but 
having finite transverse dimensions. Section III defines this 
beam, whereas section IV discuss the requirement for the lon- 
gitudinal stability and section V and VI the confinement and 
stability respectively in the transverse plane. It is seen that, in 
order to keep the beam confined transversely, a magnet with a 
profile providing focussing simultaneously in both transverse 
directions is required. This could be the case of a Betatron 
magnet. The field profile is also required to maintain the beam 
stable against transverse oscillations. Since the external restor- 
ing force is linear with the particle transverse coordinates, it is 
also important that the equilibrium configuration places parti- 
cles in such a way that the resulting space charge forces are 
also linear. 

Section VII defines quantitatively the limits of the beam 
spreads in momenta as evidence of crystallization. Finally sec- 
tion VIII is an analysis of the effects introduced by the inser- 
tions of drifts. The resulting storage ring lattice is to show 
stability at the two extremes: when the space charge is ignored 
and for the final state of the Crystal Beam 
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II. THE RECTANGULAR MODEL 

The number of particles is infinite. They all move with 
the same velocity in the same direction. Particles are uniformly 
distributed, extending to infinity in all three dimensions. They 
are equally spaced from each other, sitting at the knots of a 
rectangular grid with step size hli in the longitudinal direction 
and X1 in the plane transverse to it, The field experienced by a 
particle is the sum of all the fields generated by the other parti- 
cles. Because of the symmetry arrangement, the field is the 
same for all particles and identically equnl to zero. Thus there 
is no interaction between particles and they are perfectly 
screened from each other. This is an equilibrium configuration 
which obviously does not need to be confined with external 
forces. 

To determine if this configuration is also stable, we add a 
longitudinal perturbation of motion [3] to any particle and cal- 
culate the resulting field. For a small perturbation, after linear- 
izing the field expression, we obtain that the particle perturbed 
performs longitudinal oscillations with angular frequency 
given by 

Q,,? = 
Q2e2 gil(nT) 

hi3 ? rrzA 
(1) 

where w = A,, y / hl and, with j = (jl,j~,j3), 

&(W) = cj;eO 
2 n12j32 - j12 - jz2 

(2) 
(i12 + j22 + nj2jT2 ) 5r2 

A similar result is obtained when a transverse perturba- 
tion is added. The resulting angular frequency R, has the same 
expression of lZq. (1) but the response function g,,(w) is 
replaced by gi(w) = - g,,(w) / 2. Stability requires that both & 
and gl are positive; this camlot be satisfied at the same time. 
We choose g,, > 0, so that the beam is stable longitudinally, and 
let the beam to be unstable in the transverse plane. An external 
restoring force is then required to recover the beam stability 
also in the transverse plane. The condition gll > 0 is satisfied for 
w < 1, that is for a longitudinally compact beam. 

III. THE CYLINDRICAL MODEL 

We continue assuming an infinitely long beam but with a 
more realistic finite cross-section, Particles are still uniformly 
distributed in the longitudinal direction, where they are sepa- 
rated again by the period h,, so that no confinement is required 
‘and the motiou is stable in that direction. We assume there is 
an equilibrium configuration where the beam is made of a 
number n, of shells of elliptic cross-set tions of the same aspect 
ratio. Each shell is made of nh particles equally spaced by the 
same angle 0 = 27~ In!,. The innermost shell is a string where 
the particles are aligned, equally spaced, on the beam axis. 
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It can be seen that the longitudinal component of the 
field vanishes identically, whereas the transverse component is 
zero on the beam axis and increases in amplitude toward the 
edge of the beam. Its magnitude and direction is independent 
on the longitudinal position along the be‘am. In the limit of a 
large number N of pcarticles distributed over a length L, and for 
a round beam of radius 0, the transverse field is actually linear 
with the distance r from the beam axis [4], that is 

EI = 2QeNr ILb’ = kr (3) 

as long as the i-th shell is located at the radius bi = b m In 
particular the string h,as vanishing radius, that is b0 = 0. 

Clearly this configuration needs to be confined with 
transverse external restoring forces, also linear. 

IV. LONGITUDINAL STABILITY 

As for the previous model, we determine the longitudinal 
stability by adding a small longitudinal perturbation to the 
motion of any particle. After line,arizing the field expression, 
WC derive that the particle performs longitudinal oscillations 
with angular frequency RI, given by 

Cl,,” = 
Q’e’ gll(w) n2,3/2 

b3 9 mA 

where now w * = -$ A,,’ n, / b* and ( i = 0, 1, . . . . n, ) 

glltn') = cj*i 
2w2j3* _ i _ j, + alijl cos (0 j2) 
[i + jl - mcos ((3 j2) + w2 j3*Pn 

(5) 

In order for the beam to be stable against longitudinal 
perturbations il is required that g,,(M’) > 0, that is the compact- 
ness parameter w is to be less than a limiting value which 
depends on the number n, of shells and on the separation angle 
8. For instance [3], for a single shell w < 1.9 8 and for ten 
sheils n' < 6.0 8. 

V. TRANSVERSE CONFINEMENT 

Let us consider the motion of the i-th particle in the 
transverse plane by adding a radial perturbation [3]. We shall 
still assume a round be‘am, for simplicity. Its position can be 
w&en as ‘i = roi + U. The equation of motion can be written as 
follows 

mA pi = Qe Ei(ri) 

= Qe Ei(roi) + Qe dEi(ri) lclri Ir, U + . . . (6) 

= mAi;& + mAii 

where Ei is the field acting on the particle. Illis can be broken 
down into two equations 

r,lA ~0; = Qe E‘{roJ (7) 

and 

mAii = Qe dEi(ri) /dfi 1 roi u 

The field is made of two contributions: the infernal, due 
to the beam proper, and the equivalent external due to the 
restoring forces. In particular, 

Ei = (k - kerr) ‘6 (9) 

where k is given by Eq. (3) and k,, corresponds to the restor- 
ing forces. 

The following conjinement condition is to be satisfied 

k,l = k (10) 

This condition is fulfilled by having the beam circulating 
in a Betatron which provides focusing in both transverse direc- 
tions at the same time. The magnetic field profile is measured 
by the field index n, a positive quantity, less than unit. For a 
round beam, a suitable choice is n = 0.5 in which case 

k exl = p&l 2p (11) 

where Bo is the bending field and p the bending radius. 
The confinement condition can be expressed in terms of 

the magnet and beam parameters as follows 

Ap2j)zb2 = 2Q2r0Np (12) 

VI. TRANSVERSE STABILITY 

The stability of motion in the transverse plane is investi- 
gated by solving Eq. (8) where 

d Ei(ri) 
dri = - kcxt - Qe glW n, 3/Llb3 (13) 

‘oi 
The first term at the right-hand side is the contribution from the 
external restoring forces whereas in the second term, proper of 
the beam, gl(w) = - g&w) / 2. We recover thus the result we 
have already obtained for the rectangular Crystal Beam model. 
Therefore the same considerations made before will also apply 
here. 

The following stuhility condition is to be satisfied 

k 6x1 > Qe g&w) rrs3/? I 2b2 (14) 

which can also be written as 

fi’glt(w) < 4 nit (15) 

Particles will then perform transverse oscillations with 
an angular oscillation frequency RI given by 

Q, * = 2Q2e2 (NIL) E(W) 
mA$ b2 

(16) 

where 

E(W) = 1 - wg,,(w) /4nlI (17) 

which ranges between 0 and 1 for the motion lo be stable in the 
transverse plane. 

VII. BEAM CRYSTALLIZATION 

With a perturbation added, the beam will perform stable 
longitudinal oscillations provided that the amplitude alI of the 
oscillations is small enough. The beam momentum spread is 
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then measured by the maximum velocity encountered during 
the oscillations, that is 

APII = mA Y fml (18) 

where Cl,, is given by Eq. (4). Since the condition for 
crystallization can be taken as 

all < 4 

the same condition can be expressed as follows 

APII /P < 4141 / PC 

(19) 

(20) 

A similar condition ought also to be satisfied for the 
transverse momentum spread, that is 

ApI < mAyObfil (21) 

which is obtained by requiring that transverse oscillations have 
an amplitude al < 8 b. and where Q, is given by Fq.(16). 

VIII. INSERTION OF DRIFT SPACES 

Circulation of the beam in a betatron magnet will 
introduce the effect of curvature that we shall not investigate 
here. Drifts are required for beam manipulation like injection, 
abort and cooling. The betatron magnet will thus be broken in 
M identical periods each of length Cu = 27rp / A4 and separated 
by drifts of length $,.The insertion of drifts will disrupt the 
equilibrium configuration and it will not be possible to 
maintain the beam cross-section constant. The motion remains 
periodic with the period length equal to 27rp / M + 6. 

Iet z, denote either the horizontal or the vertical 
coordinate of the i-th particle. It is more convenient lo replace 
the time as the independent variable with the curvilinear length 
s travelled along the reference closed orbit. The equation of 
motion can now be written as 

Zj” + [Qdk,,, - k)lmAyp2c2] zj = 0 (22) 

where k,,, = 0 in the drifts and takes a constant value in the 
sector magnets. For convenience let us write 

K = Qek eXl /NIA~~%~ (23) 

The term k which is proper of me beam itself, includes a 
dependence on the beam size b and therefore will also vary 
periodically. It is convenient to write the dependence with the 
beam size explicitly 

Qe k I mnA y f3’c2 = 
2Q2e2 (NL!.) 

mA ? b2f3*c2 
= hlb’ (24 

The solution of the equation above of course has to be 
periodic with the period given by tu + CD. In particular, the 

equation of motion can be written for the particle at the edge of 
the beam, thus deriving the equation of the beam envelope 

b” + Kb - h/b = 0. (25) 

We shall assume that the drifts are not too long so that 
the beam dimension remains amlost constant with a little 
periodic modulation added. Let b = 00 (1 + A) where ho is 
the beam size in absence of drifts. We shall expand and retain 

only terms linear in A. In the drift regions K = 0 and the 
envelope equation reduces to 

A” + KDA = KD (26) 

with KD = h / bo*. The equation for the sector magnet, letting 
KB = K + KD, is simply 

A” + KB A = 0 (27) 

The periodic solution of these equations, which nre linear, can 
be searched with the conventional 3 x 3 matrix notation [3]. 

To determine the stability on the transverse plane, as 
usual, we add a small perturbation [4 to any particle along one 
of the two transverse directions. After linearization, the 
equation of motion is 

u ” + qu = 0 

where, in the sector magnets, 

(28) 

4=fi2,*/p2c2= qB (2% 

and, in the drifts, 

q = - qB w gll(w) / 4 nh E(w) = -qD (30) 

As usual, we can search the solution with a matrix 
notation [3]. Only 2 x 2 matrices are required. The motion is 
stable if me trace of the transfer matrix corresponding to a 
period has an absolute value not exceeding 2, that is 

12COS kB cash 51, + caB - dqB/qD )Sin 50 sinh ‘!$,Dl < 2 
(31) 

- - 
Where !& = tB 4 @) and CD = tD 4 QD. A SiIIlih condition 
is to be satisfied also for the stability of motion in the storage 
ring in the limit of zero space-charge forces, that is 

1 2cos (Cglp) - (Q)lp)sin (C&) 1 < 2 (32) 
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