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Abstract 

This work extends Robinson’s stability studies [l] 
to include a higher rf harmonic. Using an equivalent 
circuit model, the stability of the “O-mode” coherent dipole 
oscillation of bunched beams is studied for synchrotrons or 
storage rings with rf systems operated at the fundamental 
and a higher harmonic, i.e., a second or third harmonic. 
Analytical expressions of the stability criteria are derived 
from the linearized circuit equations. Numerical solutions 
of the fully nonlinear equations are provided to compare 
with the analytical results. A simple feedback model for 
stabilization is discussed. 

I. INTRODUCTION 

Higher-harmonic rf systems are frequently used in 
synchrotrons and storage rings to increase bunch length 
in order to reduce the space charge effects, and to damp 
the longitudinal instability by increasing the synchrotron 
frequency spread [2,3]. Under the circumstance of heavy 
beam-loading, instability may occur due to the beam- 
induced voltage on the cavities. For a single-frequency 
rf system, this kind of instability has been well studied 
[1,4]. However, few documents can be found on the 
theory of the stability of rf systems with higher harmonics 
[3,5]. A rigorous study of this subject requires either 
complex calculations using kinetic theory and nonlinear 
particle dynamics or substantial computer simulations for 
exploring the parameter space. Because some future 
accelerators may use a higher-harmonic rf system, a 
theoretical understanding of and methods for estimating 

In the equivalent circuit model, an rf cavity is 
envisioned as a parallel RLC circuit. The applied rf power 
source and the circulating beam current can be modeled 
as currents i, and ib, respectively. We consider a system 
having two cavities: a “fundamental cavity” operated at 
the frequency wi, which is equal to the hth harmonic of the 
revolution frequency of beam particles, and a “harmonic 
cavity” operated at the frequency ~2, which is equal to 
nwi. For systems run with both frequencies of rf power 
in one type of cavity, the following formalism still is 
applicable. 

By Kirchhoff’s law, the total voltage on each cavity 
vk satisfies the differential equation 

d2vk 
-@ + 2%+ + ‘&vk = h’k%h 

d(igk + ib) 
dt ) (1) 

where Jc = 1 (for the fundament,al cavity) or 2 (for 
the higher harmonic cavities); t is the time, ok = 
W/(2&k), w,“k = l/(&ck); Rk, Lk, ck and Qk are 
the shunt resistance, the inductance, the capacitance, and 
the quality factor of each cavity respectively. For high- 
& cavities, only those Fourier components of ib with 
frequencies near wrk need to be considered. In the 
steady state, vk is maintained at the phase &k with 
respect to the beam current. Our interest here is the 
stability of the small oscillations of the phase deviations 
in cavity voltages C&k and beam current dbk (4b2 = 
ndbi) around their steady states. Thus, making the 
substitutions Of vk = v,(t)eXp{-j[Wkt + $,,k +$&k(t)]}, 

ib = 161 exp{-j[wlt + ‘#61(t)]) + Ib2exp{-dwZt + 4b2(t)l), 

and igk = Igk exp{-j(tikt + $,k)} in Eq. (l), we derive 

the stability of double-harmonic rf system are needed 
before rigorous theory and computational data become -$$+vk =%!k 

available. Simple conditions for stability were obtained 
by Miyahara et al. [3]; however, these results are and _. 

[bk cos dvk - -rbk Ca(4bk - ‘#‘vk - $h,k)] , 

(2) 

applicable for some specific cases only. In the followings, 
we discuss the beam loading stability in an rf system with 
a higher harmonic by directly investigating the equations 
derived from the equivalent circuit model. An example of 
controlling the system stability by using the “rf feedback” 
[6] will be given. Details of the mathematical derivations 
and part of the following materials have been included in 
a few recent reports [7,8]. 

II. THEORETICAL MODEL 

‘Work supported by the US Department of Energy, Office of High 

Energy and Nuclear Physics. 

1 d&k -- = wr1 - Wgk 

&k dt ak 
- Rk [Igk sin dvk 

(3) 
+ zbk sin(+bk - hk - hk)] /vk , 

where j = fl. Some approximations were used to derive 
Eqs. (2) and (3). First, we assumed that the bandwidths 
of the impedances of these two types of cavities are 
much smaller than the separation between their resonant 
frequencies, so only one of the beam current’s harmonics 
is considered for each cavity. Second, because ok << wk 
for high-Q and high frequency cavities, we neglected the 
time derivatives of vk and d\‘k/ldt when comparing with 
the products of these qunatities and the rf frequencies. For 
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simplicity, we assumed $gk = &k, i.e., the system is tuned of a beam particle respectively; and R is the averaged 
for the rf sources to see real impedances. In obtaining Eq. machine radius. All these conditions must be satisfied for 
(3), we ah0 used the approximation wk l l-W,k W 2wk. the system stability. Condition Fl > 0 can be rewritten as 

The equations of beam motion are those of 
synchrotron motion: IblRl 2(1 - E) 

I/s1 cos $$I < sin(24,i) - nti(as/K?i)sin(2+,2) ’ (7) 
dAE 
- = E [vl sin(dhl + 4~1 - &1) - I/s1 SiII?J!J,1 dt 

(4) 

and 

+ v2 sin(&2 + h2 - dbl) - v$z Sin $d2] , 

(5) 

where E, is the total energy of the reference particle, 
AE is the energy deviation from E,, p is the speed of 
the reference particle divided by the speed of light, @Sk 
is the synchronous angle between the beam current and 
the cavity voltages, Vsk is the value of I’k at steady state, 
and n = 7;’ - y-‘. In this paper we consider the case 
of y < yl. However, the case of y > 7t can be treated 
with the same procedures. Note that in the steady state 
Kk = Rk(lgk - Ibk COS $‘,k), and 

-(RkIbk Sin $‘uk)/xk = (“‘rk - wk)/ak = tan dykr (6) 

where &k is referred to as the detuning angle. 

III. LINEAR STABILITY CONDITIONS 

Applying Routh’s criteria [9], we obtain the following 
necessary and sufficient conditions for a stable system: 

Fl = 

F2 = 

F3 = 

and 

F4 = 

where 

bo > 0, 
k&ib5 - b3) - bs(bsbz - bl) > 0, 

(b4b.s - h)(bzbs + bobs - bIba)-(bzbs - b$ > 0, 

Pdb4b5 - b3) - b5(hibz - bl)][h(bzb5 - bl) 

- bob&] - [bl(b.h - b3) - bob;]’ > 0, 

bo = w,2(1- 0~1~2 - Alp2 - X2~1, 

bl = 2~,2(1- E)(wz + cm) - 2(a1X2 + 4d 

bz = ~1~2 + w,2(1- UPI + ~2 + 4a1m) - XI - AZ, 

b3 = 2(w2 + azpl) + 2~3 I- [)(&I + ~2), 

b4 = PI+ PZ + 4wm + wz(l- 0, 

hi = 2(w + az), 

I = -(7%2coS~r,2)/(Kl cwb1), 

AI, = ((Y~W~RkIbktan~,k)/(V,1 COSdhl), 

Pk = a: ~ec’~yk~ 

where w, = [(-qqhVsl cosp!~,~)/(25~mR~)]‘~~, is the 
synchrotron frequency without the higher harmonic rf 
field; q and m are the charge and the relativistic mass 

where 29 = Ibz/lbi. Equation (7) is similar to the result 
obtained by Miyahara et al. [3] except for the factor of 
29 on the right hand side. When < = 0 = 0, the above 
inequality reduces to the Robinson stability criterion [I] 

Si@&l) < (2vsl COS $hl)/(%~bl) . (8) 

The other Robinson stability condition, sin &,I > 0, can be 
obtained from the condition F..J > 0 by letting < = 6 = 0 
and a2 + 0. 
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Figure 1. Comparison of the analytical and the numerical 
solutions for Eqs. (2)-(5). Shaded areas correspond to the 
unstable regions: F4 > 0 at the lower left corner; Fl > 0 
and F4 > 0 (heavily shaded) at the upper right corner. 
Numerical solutions of Eqs. (2)-(5) are shown by circles 
for stable and damped oscillations, stars for unbounded 
unstable solutions, and triangles for initially unstable but 
asymptotically bounded solutions. 

The nonlinear equations (2)-(5) have been solved 
numerically to compare with the results evaluated from 
the linear stability conditions. In general, solutions of Eqs. 
(2)-(5) can be roughly grouped into three categories: (i) 
stable and damped oscillations, (ii) unbounded unstable 
solutions, and (iii) initially unstable but asymptotically 
bounded solutions. A comparison of the numerical with 
the analytical solutions is given in Figure 1. In this case, 
both the fundamental and second harmonic rf are used for 
bunching. The unstable zones are shown in the shaded 
areas on the < - c&i plane for the parameter values of 
n = 2, A1 = 0, A2 = 7r, (W&rl)” = 0.1, 7Z2/Ri = 0.3, 
Qi = Qz, and 29 = 0.7. The cavity detunings are related 
by tan &2 = -(nS&/ti) tan&i. Conditions F2 > 0 
and F3 > 0 are always satisfied in this region. Also 
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shown in Figure 1 are the qualitative results of more than 
fifty numerical solutions of Eqs. (2)-(5). The agreements 
between the analytical and the numerical solutions seem 
very good in describing the local st,ability. 

IV. FEEDBACK CONTROL 

We consider an example of increasing stability by 
using the “rf feedback” [6]. More control examples will 
be included in another paper [lo]. In the rf feedback, a 
fraction of the rf gap voltage is subtracted from the driving 
signal at an appropriate point in the amplifier chain. When 
using t,his kind of feedback with an open loop gain of H, 
the effective cavity impedance will be reduced by a factor 
(1 + H). For a single-harmonic system, if the rf feedback is 
the only control used, the threshold current in Eq. (8) can 
be raised by a same factor. For a double-harmonic system 
equipped with separate rf feedbacks for each harmonic, the 
linear stability conditions derived in the last sect,ion are 
modified by the substitution of Rk -+ R; = Rk/(l + Hk) 
for k = 1 and 2, where Hk is the open loop gains of the rf 
feedbacks. Analytical relations between the stability limits 
and EJTk are difficult to obtain in this case and a numerical 
evaluation is necessary. 
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Figure 2. Plot of the threshold beam current versus &I 
for R;/R; = 0.8 (dotted curves and lines), 0.4 (solid), 0.1 
(dashed , 

b 
and the system parameter values given in the 

text. T e curves correspond to the solutions of Fl = 0. 
The almost vertical lines on both sides of the curves are 
the solutions of Fd = 0 (the LHS and the RHS solutions). 
For Rz/R; = 0.1 and 0.4, the LHS solutions coincide with 
the line &l = 0. The stable zones are these regions below 
the curves and between the LHS and the RHS solutions. 
The thresholds derived from Fz > 0 and F3 > 0 are higher 
than 100. 

As an example, consider an rf system operated at 
both the fundamental and the second harmonics. We 
assume that, in the absence of feedback, the system is 
characterized by < = 0.8, &I = Qz, &2 = 70°, 6 = 

0.65, (w~/~II)’ = 0.1, and ~&/RI = 0.4. With the 
feedback on, the threshold beam currents normalized by 
(V31/R1) cos $$I, are shown in Figure 2 as functions of &I 
for the cases of R’,/R; = 0.8, 0.4, and 0.1. 

As shown in Figure 2, the stability limit given by 
the vertical line on the right hand side of the figure moves 
towards a higher detuning angle when the ratio a;/R; 
decreases. In the medium and low &I regions, the stability 
limit given by the curve increases as the ratio Rz/R; 
increases. Thus, for systems operated at high &I, Hz 
needs to be higher than HI in order to increase the system 
stability. For the systems operated at medium and low 
4 yl, it may be more desirable to have higher HI for higher 
stability. 

V. CONCLUSIONS 

Using an equivalent circuit model and linearized 
circuit equations, we derived the stability conditions for 
the beam-loading in synchrotrons or storage rings with 
a higher rf harmonic. We found that, when compared 
with the beam-loading stability limit of a single-frequency 
system, the addition of higher-harmonic rf without any 
external control may decrease the stability threshold. 
Numerical examples of the stability limits were given and 
compared with the analytical results. The agreements 
between the analytical and the numerical solutions in 
describing the local stability are very good. Finally, we 
gave an example of the use of the “rf feedback” control 
was discussed by using an example. 
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