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Abstract 

LYc examine the coherent. beam-beam effect,s for the case 
of a very flat. beatn by multi-particle tracking. On 
resonances, the coupling between coherent. dipole mode 
and higher modes plays an important role. 

1 Introduction 

Multi-particle tracking(MPT) is a powerful tool to eval- 
uate the beam-beam effects accurately[l,2]. In MPT. 
beatn is represented by a cluster of particles and each 
particle motion is pursued numerically. The aim of this 
report is to examine the significant effects on the coher- 
ent dipole motion by MPT. To t,his end, it is valuable 
to consider the problem in a simplified situation: both 
beams are aery JInt. In this case. the dominant beant- 
beam effect will appear in the vertical motion only. If we 
neglect the modulation on the vertical beam-beam force 
by the horizontal betatron mot.ion, we can consider the 
beam-beam probletn in one dimensional space. While 
t,his is a rather dr&ic simplificat,ion a.nd an ideal tnat,lt- 
rmatical limit,, the result, of this approach should be use- 
ful for further study on the beam-beam problem. In our 
approach, it is important that we evaluate the beam- 
I)eam kick without any kind of assumption for beatn 
distribut,ion. 

When estimating the beam-beam force in a t.racking 
study, sometimes, the beam barycenter motoin is IV- 
glect,ed (bot,h beams are forced to be always in head-on 
collision)[l] or the beam envelope is apprositnated as a 
Gaussian[2]. The former scheme artificially eliminates 
t,he contribution from the dipole mode and the lat,ter 
from some part of other higher order modes. Howevet 
this tnay give a great influence ou the beam motion. In 
fact. as for the latter, the impoltance of non-Gaussian 
effect was already pointed outjl]. In the present pa- 
per, we will see that we should also pay attent,ion t.o the 
dipole niot.ion. 

MPT with these two schemes are less realistic t,han 
that with ours. LVe call the scheme of the former, MPT 
with Gaussia.n approximation, the Error-function Scheme 
(EFS) since the beam-beam force is described by the er- 
ror function. As for the lat.ter, MPT which does not, 
include dipole tnode, we call it the NeDipole Scheme 
(NDS). Our scheme is called the Sorting Scheme (SS) 
since the beatn-beam force calculation is executed based 
on the sorting algorithm. 

2 MPT in one dimensional space 

We consider a. sitnple model ring that has only one in- 
t,eraction point(1P) and consist,s of only linear elements. 
The beam-beam kick at the IP is AYt = 0 and 

AYT = -2?r3/“rl J dY;p*(Y;)E(Y] - Y;), (1) 
where E(y) = rtl for ~$0, the quantity with * refers 
to the encountering bunch, p is the distribution func- 
tion and 17 is the nominal beam-beam parameter. Here 
we use the canonical variables of an e*, Yt* = y*/a~ 
and YZ* = /j&y&/~oy, where uoy is t.he nominal ver- 
tical bea.m size and 40, is the nominal betatron func- 
tion at the IP. We can calculate the beam-beam force 
by count,ing the number of part,icles[3]. From Eq.( l), 
Al’? = -27r3/“9(11’,” - N,d)/(lV,” + Nf). where IV”(“) is 
the number of particles in the encountering bunch which 
are above (below) Yt Any approximation in evaluating 
the beam distribut,ion p is not necessary. 

In the arc, the beatns arc t.ransport,etl wit.h linear 
betatron tnotion perturbed by the effects ofsynchrotron 
radiation[4]: (Yt , Yz)’ changes to 
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Here p = 27ru (v being the tune), X = exp(-l/T) (7 
being the vertical damping time divided by the revolu- 
t,ion titne) and r, is a Gaussian random number with 
zero mean and the unit r.m.s. 

We define the beam coherent quantit.ies as usual: for 
dipole modes, pi* = (I:*) and for quadurupoles, hf$ = 

((I;* - pi*)(l>* - pj*)), where () means the average 
over the particles in a buch and i, j = 1, ‘2. 

3 Result and Discussion 

We st.udy the head-on collision only. The two beams 
have the satne design orbit.. We use a rat,her large beam- 
beatn parameter, tl = 0.10, in order to enhance Ihe 
beam-beam effects. 

3.1 Equzlibrium behazuor 

We employ following three average quantities to spec- 
ify it: the average distance of two barycenters D E 

(IFi+ - &-I)a”, the average effective beam size C E 
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(/m-zzm and the luminosity reduction factor: 

Here ( ),, means average over many turns. The real lu- 
minosity L is Lox R where Lo is the nominal luminosity[5] 

At first, we compare SS with EFS. The result is 
shown in Fig.1. Generally speaking, the equilibrium 
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Figllre 1: The tracking result,s of SS and EFS. (Top) 
the luminosity reduction factor R by SS (line) and EFS 
(+), (Middle) The barycenter difference D (x) ant1 t.he 
effectjive bram size C (as error bars) by EFS. (Bottom) 
D and II: in SS. Parameters: II = 0.10 and T = 1000. 
\Ve started from ,lld = I and i;: -yIil- = 0.0 and tracked 
for 10000 turns. 1000 particles were used for each beam. 
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Figure 3: The change of the barycenter difference, d = 
* 112 Iv+ - f- 1 and two beam emittances, C* = (det M ) , 

by every turn. For (first) 2000 turns in SS. u = 0.22. 

state predict.ed by EFS is very similar to the one by SS 
at, allnost all tunes. This is a surprising and interestming 
fact. As far as the equilibrium property is concerned, 
the Gaussian approximat,ion for beam envelope seems 
to he good. There, however, are some except,ions. 

SS, we have rapid growth of both beam sizes in the be- 
ginning. However, the dipole oscillation becomes promi- 
nent gradually and the beam sizes are slowly damped to 
the nominal one. The similar behavior was observed in 
EFS. 

\Ve have a large dip in 12 below u = 0.5 (half-integer 
resonance). This is due to the coherent dipole instabilit.y[G, 
71. Another large dip is seen below v = 0.25 (the fourth 
order resonance) both in SS and EFS. We naturally 
cspect the quadrupole instability[G], however SS and 
EFS sllow the appearance of dipole oscillation inst,ead 
of bcani size enhancement. The particle distribution in 
phase space is shown in Fig.2. We have t.iny dipole exci- 
t,at,ion at the sixth order and t.lle third order resonances 
in SS, while it does not exist in EFS. 

The same mechanism seems to work at the sixth or- 
der resonance (around v = 0.16) but not apparently. We 
have beam size enhancement first, but the excitation of 
t.he dipole mode is extremely slow: we tracked for 90000 
t,urns (for 90 damping time), but the system does not 
seem to be in equilibrium. The phase space distribution 
in SS is shown in Fig.4. It seems that 77 = 0.10 is too 
small to excite a rapid and large dipole oscillation at the 
sixth order resonance. We observe a very small dipole 
excitation in EFS but it does not grow at all. 

To study these properties of nonlinear resonances, we 
will observe what occurs on the beam mot,ioll in a way 
to t.hc equilibrium. 

On the third order resonance, a similar mechanism 
seems to work. We found the dipole oscillation was ex- 
cited only in SS. The origin of this excitation may at- 
tribute to the skewness of p, which makes the odd order 
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Figure 2: The phase space equilibrium distribution of et 
and e- bunches (Y,’ , Y,‘) on the fourth order resonance 
in SS. We have similar beam distribution in EFS. v = 
0.22 The system moves in period-4. 

3.2 Transztion properties 

Let us see the fourth order resonance first. See Fig.3. In 
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Figure 4: The particle distribution in phase space on the 
sixth order resonance after 90000 turns in SS. v = 0.13. 
The system may not still he in the equilihrium. Two 
beam envelopes are asymmetric ((~W~/M1;),, = 2.76). 
Dipole mode is exited (D = 2.0). 

components in beam-beam force with respect to 1’1 even 
with head-on collision. We found the flip-flop st,at,es in 
t.ho equilibrium in SS only. In EFS, because of this as- 
sumption, the skewness is zero, so that the dipole exci- 
tation does not occur. On the cont.rary, in t,lre collision 
with the primordial offset at, IP, third order resonance 
can be excited even in EFS. 

Above results indicate the importance of the cou- 
pling between dipole and higher order modes. III t,his 
sense, NDS is a special scheme since it assumes the ex- 
istence of feed-back system that eliminates completely 
the beam dipole excitation Especially, in the case where 
the dipole mode plays a dominant role, NDS will give a 
very different result. Let us see it. 

3.3 No-Dipole Scheme 

In NDS, a completely different motion appears on above 
nonlinear resonances, since the barycenter motion is com- 
pletely eliminated before the two beams collide. See 
Fig.5 and compare it with Fig.2. In NDS, each beam 
splits into two pieces in phase space. Notice that the 
beam sizes change by period-2 and oul of phase with 
each other. The assumption of a very fast and powerful 
feed-back system makes this difference. 

4 Conclusion 

We have realize that the coupling of coherent dipole 
mode and some other modes is important in the beam- 
beam dynamics. Its prominent effect was seen on the 
forth order resonance, where the quadrupole mode was 
unstable first, but the dipole mode was excited gradually 
and finally beam separation took place. On the sixth or- 
der resonance, the same mechanism seems to work but 
not so obvious. Another example was seen at the third 
order resonance. It seems that a flip-flop phenomenon 
and a small dipole excitation coexist in the equilibrium. 

Figure 5: The equilibrium particle distribution in phase 
space in NDS. v = 0.22. The system moves in period-4, 
but the distribution is drastically different from that of 
SS. See Fig.2. 

As stressed in [l], we should not use any assumption 
in calculating the beam-beam force. This applies for the 
dipole tnode. The NDS treats t~he very special situation: 
ring with an extremely fast, feed-back system. 
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