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We examine the coherent beam-beam effects for the case
of a very flat beam by multi-particle tracking. On

resonances, the coupling between coherent dipole mode
and higher modes plays an important role.

1 Introduction
Multi-particle tracking(MPT) is a powerful tool to eval-
vate the beam-beam effects wrr‘nrafplvfl 9] In MPT,

beam is represented by a cluster of pa‘rtlcles and each
particle motion is pursued numerically. The aim of this
report is to examine the significant effects on the coher-
ent dipole motion by MPT. To this end, it is valuable
to consider the problem in a simplified situation: both
beams are very flat. In this case, the dominant beam-
beam effect will appear in the vertical motion only. If we
neglect the modulation on the vertical beam-beam force
by the horizontal betatron we can consiacr the
beam-beam problem in one dimens1onal space. While

this is a rather drastic simplification and an ideal math-
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ematical limit, the result of this approach should be use-
ful for further study on the beam-beam problem. In our
approach, it is important that we evaluate the beam-
beam kick without any kind of assumption for beam
distribution.

When estimating the beam-beam force in a tracking
study, sometimes, the beam barycenter motoin is ne-
glected (both beams are forced to be always in head-on
is appr
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Gaussian[2]. The former scheme

the contribution from the dipole

from some part of other higher order modes. However
this may give a great influence on the beam motion. In
fact, as for the latter, the importance of non-Gaussian
effect was already pointed out{l]. In the present pa-
per, we will see that we should also pay attention to the
dipole motion.

MPT with these two schemes are less realistic than
that with ours. We call the scheme of the former, MPT
with Gaussian approximation, the Error-function Scheme
(EFS) since the beam-beam force is described by the er-
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include dipole mode, we call it
(NDS).

Our scheme 1s called the So

since the beam-beam force calculation is executed basui
on the sorting algorithm.
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We consider a simple model ring that has only one in-

teraction pnnwf(ID\ and consists of nn]u linear elements

The beam-beam kick at the IP is AY; = 0 and
AY, = _2n3/27,/d}1 p(YOEY, =Y"), (1)
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and Yzi = Poyyy /00y, where ogy is the nominal ver-
tical beam size and o, is the nominal betatron func-
tion at the IP. We can calculate the beam-beam force
by counting the number of particles[3]. From Eq.(1),
AY, = —223/2n(N¥ — N¥)/(N¥ + N&), where N*(4) is
the number of particles in the encountering bunch which
are above (below) Y. Any approximation in evaluating
the beam distribution p is not necessary.
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Here p = 2w (v being the tune), A = exp(—1/T) (I
being the vertical damping time divided by the revolu—
tion time) and r; is a Gau an
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zero mean and the unit r.m.s.

We define the beam coherent quantities as usual:
dipole modes, Yi
(YE - Yii)(}’j* - in))? where {) means the average
over the particles in a bunch and ¢,j = 1,2

a
a

for
(Yi) and for quadurupoles, M‘?f =

3 Result and Discussion
W, udy
have the same design orbit. We use a rather large beam-
beam parameter, 7 0.10, in order to enhance the
beam-beam effects.

Ve The two beams

e st the head-on collision only.

following three average quantities to spec-
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MY 4+ M), and the luminosity reduction factor:
11 11
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Here { )4, means average over many turns. The real lu-

minosity L is Lo x R where Lg is the nominal luminosity[5].
At first, we compare SS with EFS. The result is

shown in Fig.1. Generally speaking, the equilibrium
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Figure 1: The tracking results of SS and EFS. (Top)
the luminosity reduction factor R by SS (line) and EFS
(+). (Middle) The barycenter difference D (x) and the
effective beam size ¥ (as error bars) by EFS. (Bottom)
D and ¥ in SS. Parameters: n = 0.10 and 7" = 1000.
We started from M = I and Y;* — ¥ = 0.0 and tracked
for 10000 turns. 1000 particles were used for each beam.

state predicted by EFS is very similar to the one by SS
at almost all tunes. This is a surprising and interesting
fact. As far as the equilibrium property is concerned,
the Gaussian approximation for beam envelope seems
to be good. There, however, are some exceptions.

We have a large dip in R below v = 0.5 (half-integer
resonance). This is due to the coherent dipole instability[6,
7]. Another large dip is seen below v = 0.25 (the fourth
order resonance) both in SS and EFS. We naturally
expect the quadrupole instability[6], however SS and
EFS show the appearance of dipole oscillation instead
of beam size enhancement. The particle distribution in
phase space is shown in Fig.2. We have tiny dipole exci-
tation at the sixth order and the third order resonances
in SS, while it does not exist in EFS.

To study these properties of nonlinear resonances, we
will observe what occurs on the beam motion in a way
to the equilibrium.
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Figure 2: The phase space equilibrium distribution of et
and e~ bunches (Ylt , th) on the fourth order resonance
in SS. We have similar beam distribution in EFS. v =
0.22 The system moves in period-4.

3.2  Transttion properties
Let us see the fourth order resonance first. See Fig.3. In
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Figure 3: The change of the barycenter difference, d =
[Y+—Y -] and two beam emittances, et = (det Mi)l/g,
by every turn. For (first) 2000 turns in SS. v = 0.22.

SS, we have rapid growth of both beam sizes in the be-
ginning. However, the dipole oscillation becomes promi-
nent gradually and the beam sizes are slowly damped to
the nominal one. The similar behavior was observed in
EFS.

The same mechanism seems to work at the sixth or-
der resonance (around v = 0.16) but not apparently. We
have beam size enhancement first, but the excitation of
the dipole mode is extremely slow: we tracked for 90000
turns (for 90 damping time), but the system does not
seem to be in equilibrium. The phase space distribution
in SS is shown in Fig.4. It seems that n = 0.10 is too
small to excite a rapid and large dipole oscillation at the
sixth order resonance. We observe a very small dipole
excitation in EFS but it does not grow at all.

On the third order resonance, a similar mechanism
seems to work. We found the dipole oscillation was ex-
cited only in SS. The origin of this excitation may at-
tribute to the skewness of p, which makes the odd order
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Figure 4: The particle distribution in phase space on the
sixth order resonance after 90000 turns in SS. v = 0.13.
The system may not still be in the equilibrium. Two
beam envelopes are asymmetric ({M; /M[})., = 2.76).
Dipole mode 1s exited (D = 2.0).

components in beam-beam force with respect to Y; even
with head-on collision. We found the flip-flop states in
the equilibrium in SS only. In EFS, because of this as-
sumption, the skewness is zero, so that the dipole exci-
tation does not occur. On the contrary, in the collision
with the primordial offset at IP, third order resonance
can be excited even in EFS.

Above results indicate the importance of the cou-
pling between dipole and higher order modes. In this
sense, NDS is a special scheme since it assumes the ex-
istence of feed-back system that eliminates completely
the beam dipole excitation. Especially, in the case where
the dipole mode plays a dominant role, NDS will give a
very different result. Let us see it.

3.3 No-Dipole Scheme

In NDS, a completely different motion appears on above
nonlinear resonances, since the barycenter motion is com-
pletely eliminated before the two beams collide. See
Fig.5 and compare it with Fig.2. In NDS, each beam
splits into two pieces in phase space. Notice that the
beam sizes change by period-2 and out of phase with
each other. The assumption of a very fast and powerful
feed-back system makes this difference.

4 Conclusion

We have realize that the coupling of coherent dipole
mode and some other modes is important in the beam-
beam dynamics. Its prominent effect was seen on the
forth order resonance, where the quadrupole mode was
unstable first, but the dipole mode was excited gradually
and finally beam separation took place. On the sixth or-
der resonance, the same mechanism seems to work but
not so obvious. Another example was seen at the third
order resonance. It seems that a flip-flop phenomenon
and a small dipole excitation coexist in the equilibrium.
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Figure 5: The equilibrium particle distribution in phase
space in NDS. v = 0.22. The system moves in period-4,
but the distribution is drastically different from that of
SS. See Fig.2.

As stressed in [1], we should not use any assumption
in calculating the beam-beam force. This applies for the
dipole mode. The NDS treats the very special situation:
ring with an extremely fast feed-back system.
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