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Abstract 
We conduct a numerical and analytical study of the lon- 

gitudinal coupling impedance of a cavity coupled to a beam 
pipe. The aim of the study is to understand the structure 
of oscillations of the impedance at high frequency. 

where j, are the zeroes of JO(Z), and Xc(z’,z) is the cav- 
ity kernel, which in the case of the pillbox cavity can be 
written in the form 

INTRODUCTION 
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There exists an integral equation whose solution 
describes the behavior of the longitudinal coupling 
impedance for an azimuthally symmetric obstacle in a cir- 
cular beam pipe [l]. This equation was the starting point 
for an analysis that led to an explicit expression for the 
average behavior of the impedance of a cavity at high fre- 
quency [ 11. 

(4) 

(Compared to equation (3.12) of ref. 1. we have per- 
formed the summation over m.) The symbols Pl(kay) and 
Pe(kay) stand for 

In this paper we describe a numerical solution of the in- 
tegral equation for the pillbox cavity. The results are com- 
pared and found to be in agreement with earlier compu- 
tations of the impedance that are based on different equa- 
tions [2,3]. We also confirm the above-mentioned explicit 
expression for the impedance. Finally, we derive an ap- 
proximate analytical expression that attempts to account 
for rapid oscillations at high frequency. \Vhile the fre- 
quency of oscillations is predicted correctly by our model. 
the amplitude of oscillations does not agree with numerical 
results. 

Pl(kay) = Yi(kay)Jo(kby) - Ji(kay)Yo(kby) (5) 

and 

Po(kay) = Yo(kay)Jo(kby) - Jo(kay)J’o(kby). (6) 

In the expressions (l-6) a denotes the radius of the beam 
pipe, b the radius of the cavity, g the longitudinal extent 
of the cavity! and Ze the impedance of free space, 20 = 
120d-l. 

NUMERICAL RESULTS 

The starting point is the equation [I] 

In order to solve equation (1) numerically, we Fourier 
transform it on the interval [O. g] ( thus replacing the con- 
tinuous indices z an d :’ by a pair of discrete indices p and 
q. The transformed equation reads 

32 
c ~;pI;.pp = -qo, n (7) 

J 
9 2in 

dz’ G(t’)[K&’ - t) + &(z’% z)] = -; (1) 
0 

for the unknown function G(z), which is related to the 
impedance Z(k) by 

Z(k) 1 
-=2?rka 0 zo J 

’ dz G(t). (2) 

(We use e -‘kc’ for the time dependence, in contrast to eI “* 
used in ref. 1.) Here K,(z’ - z) is the pipe kernel, 
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where the tilde denotes the Fourier transform. In particu- 
lar, R,, is the sum of Fourier transforms of the cavity and 
pipe kernels. (Th e expression is cumbersome and we do 
not display it here.) The impedance is now given simply 
by 

(8) 

Thus all we need to do numerically is to construct the 
matrix I;‘,, and then to invert it. In order to ascertain 
that the result is stable, we vary the size of the matrix 
kr,, as well as the upper limits on the sums in equations 
(3) and (4). (The upp er limits on the sums are chosen such 
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that for a given size of the matrix kP4 ail singularities in 
the sums are included. Except for Figures 1 and 2, where 
it is smaller, the matrix kPq ranges in size from 81 x 81 to 
121 x 121.) 

Figures 1 and 2 show the real and the negative of the 
imaginary part of the impedance as functions of ka for 
g/a = 0.05 and b/a = 1 .l. These are the same values of 
parameters as used in Figure 6 of reference 2. The results 
displayed here are in agreement with those of reference 2. 
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Figure 1: Re[Z(k)] vs. ka for b/u = 1.1 and g/a = ( 1.0, 5. 
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Figure 2: -Im[Z(k)] vs. ka. Same parameters as Fig. 1. 

Our primary interest in this paper is to examine the be- 
havior of Z(k) at high frequency, that is for ka >> 1 and 
kg > 1. In this regime, we have compared our results to 
those obtained in reference 3 and found the two computa- 
tions to be in agreement. 

Motivated by equation (9) 
that &Z(k) 

and Figure 4, we can surmise 
is of the form 

&Z(k) = 2 ane-2inkg, (10) 
n=O 

Figure 3 shows a typical run for b/u = 1.15 and g/a = where the cr,,‘s are independent of k. The integral under 
0.75. Superposed on the numerical result is the analytical each of the peaks in Figure 4 then gives the value of Ion]. 
expression for the average behavior of impedance at high In Figure 5 we plot the integrals under the peaks vs. n for 
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Figure 3: The real part (dashed line) and the negative of 
the imaginary part (solid line) of Z(k) vs. la. The thin 
solid line is the graph of expression (9). 

frequency [l] 

Z(k) (l+i) 9 
-= 2na X’ za J- 

(9) 

We see that this expression is in satisfactory agreement 
with the numerical result. Nevertheless, even at large val- 
ues of ka the behavior of Z(k) is considerably more com- 
plicated than l/d. There are large oscillations with an 
amplitude comparable to the average value of Z(k). 

In order to elucidate the structure of the oscillations, we 
compute the Fourier transform of &Z(k) for ka 1 40 (us- 
ing an FFT algorithm). The absolute value of the Fourier 
transform of Figure 3 multiplied by & vs. z/o is shown 
in Figure 4. Apart from the fact that the Fourier trans- 
form of &Z(k) is approximately zero at positive values 
of z (as it should be by causality), the most striking fea- 
ture of Figure 4 are the sharp peaks of the graph at the 
values of --z of 2g,4g, 6g, . . . . Therefore, for large values 
of ka, Z(k) h as oscillations with periods corresponding 
to Ak = a/(ng), n 2 1. The amplitude of oscillations 
decreases with frequency. 
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Figure 4: The absolute value of the Fourier transform of 
k’/2Z(k) vs. r/a; b/a = 1.15 and g/a = 0.75. 

three different values of b. For comparison, we also plot the 
number 60/m, which is the value of 1~~1 obtained 
from equation (9). 

Figure 5: cy, vs. n for b/a =l.l (dashed line), 1.2 (dash- 
dot), and 1.5 (solid line). Also shown is the value of crc 
obtained from equation (9) (thin solid line). 

From Figure 5 we see that o,‘s in general depend on 
b/a. (With increasing b/a cyc approaches the solid line, 
but the Fourier spectrum analogous to the one in Figure 
4 becomes increasingly complicated for nonzero negative 
values of Z. We have observed this trend for values of b/a 
up to 5.) We are currently conducting additional studies 
to explore the dependence of o,‘s on b/a and g/a. 

ANALYTICAL RESULTS 

form 

&,(%’ - .Z) N -~~ik(zf-z~ff~‘)(k,z’ _ %I), 01) 

where Hi’)(z) is the Hankel function of the first kind. For 
Kc(.r’, Z) on the other hand, we use the large-argument 
asymptotic trpansions for PI and PO, and invoke the as- 
sumption that k(b - a)/r > 1 to get 

f$‘(klz’ - z[) + H$‘)(k(r + 9)) + 

CP”=1[H;“(k(21g + z - 2)) + H$‘)(k(Slg - z + 2)) + 

H~“(k(2lg + z + 2)) + H$‘)(k(2lg - z - z’))] 
I 

. (12) 

It is worthwhile to note that the dependence of K, on b 
has disappeared at this stage and so our final expression 
for Z(k) will be also independent of b. Next, we use the 
expressions above for I(p and K, in equation (l), replace 
the Hankel functions by their large-argument asymptotic 
expansions, take G(r’) of the form 

G(2) = -$ + J,“- tle-2ikr’, 

neglect integrals involving fast-oscillating terms, and re- 
place .Z and z’ by g/2 in denominators where they occur 
summed with 219 (I 2 l), to get 

Z(k) -=&&l+“)[ *+A(kg) 
zo r2 + (27r - l)X(kg) 

1. (14) 

Here 

A(kg) = 2 *. 
I=1 dQ 

(15) 

The average over oscillations in equation (14) reproduces 
the result in equation (9). The oscillations in k, on the 
other hand, occur with period Ak = ?r/(ng), n > 1, which 
is in agreement with numerical computations. The limita- 
tions of equation (14) are that it is independent of b, which, 
as we have seen, does not agree with numerical results, and 
that the amplitudes of oscillation, a,, are much smaller 
than the ones observed in simulations for 1.05 5 b/a 5 5. 
We are currently developing an analytical expression for 
Z(k) that will remove some of the simplifying assumptions 
built into equation (14). 

REFERENCES 

1. R. L. Gluckstern, Phys. Rev. D 39, 2773 (1989). 
2. H. Henke, CERN Report LEP-RF/85-41 (1985). 
3. R. Li, PhD Thesis, University of Maryland (1990). 

We begin the track towards an analytical expression for 
Z(k) by manipulating the pipe and cavity kernels. Under 
the assumption that ka/n >> 1, Kp can be written in the 
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