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Abstract 

Numerical results of the nolinear evolution of longitudunal 
instabilities of bunched beams are presented. Saturation 
effects due to the decoherence (tune spread) are catego- 
rized according to the magnitude and type of impedances. 
New phenomenon of non-saturating instability (beam 
splitting) is described. 

I. INTRODUCTION 

Nonlinear stages of development of coherent instabilities 
have been studied by a few authors /l-3/ in relation to the 
longitudinal instability of the coasting beam. Some numer- 
ical simulation studies were carried out for the bunched 
beam, with the emphasis on the thresholds of instabili- 
ties /4/. Numerical simulation results /l/ indicated that 
the longitudinal instability of the coasting beam always 
saturates and eventually decays due to the effect of deco- 
herence. In the present paper, we undertake a numerical 
simulation study of the nonlinear development of the lon- 
gitudinal instability of bunched beams. The saturation ef- 
fects due to the decoherence from the tune spread are the 
primary objects of interest. More detailed presentation of 
this study is available in Ref./81 

II. THE MODEL. 

The simulation is carried out for the model that consists 
of a single bunch interacting with a localized single-mode 
longitudinal wakefield under the assumption of the short 
bunch length relative to the wavelength of the wakefield 
(Long wavelength/ low frequency approximation in the 
analysis of Ref./5/): 

ii + WtZi - XZf = 

J- 
+62*(t) 

i + CYi + w,2q = xmz6~s(t) 
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where time is normalized to make the revolution frequency 
wo = 1, zi (i = l,N) is the coordinate of the i-th par- 
ticle, i is the coordinate of the centre of gravity of the 
beam z = & xi”=, xi, and q is the amplitude of the wake- 
field. The quantity t measures the strength of interaction 
in the continuous limit N + 00, while Szr is 2*-periodic 
S-function. Frequencies w, and we are respectively the syn- 
chrotron and resonant impedance frequencies. The con- 
stant A > 0 measures the nonlinearity of the RF potential 
well and is always small in our study. 

We will assume the interaction strength c together with 
the tune spread w, to be small, SW, << (Y (where SW, is 
the tune spread SW, = &X(x2)), c << LTW~W,. In the zero 
tune spread limit, the complex coherent frequency shift 
Aw, = w - wd can be found (see, e.g., /5/)to be: 

Aw, = g 

d 

where the complex effective impedance 2 = gr +i& is de- 
fined as 2 = Z(w#), with the regular frequency-dependent 
impedance: 

z(w) = -& F w,2 + ia(w + b) - (w + n)2 (3) 

For the finite value of the tune spread, the relevant (real) 
parameters that define the nonlinear evolution are SW,, 
Re(Aw,) and 1m(Aw,). 0 ne of these parameters defines 
the units of time, so that the evolution depends essentially 
on two dimensionless parameters: 

c r = _ Re(Aw*) 
6% 

c 
i 
= Jm(A4 

SW, 

III. SCENARIOS OF EVOLUTION. 

(4) 

The evolution in model (1) is directly simulated by us- 

ing many particles and implementing the single-turn map- 
ping. In that mapping, the nonlinearity of oscillations X is 
treated perturbatively, i.e. the mapping for xi, ii between 
the S-functional “kicks” is that of a linear oscillator with 
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the shifted frequency. The number of particles N was taken 
to be large enough to reproduce the continuous limit. We 
present in Figs.l-4 four characteristic cases of instability 
evolution. These cases are representative of four different 
scenarios that we loosely define by the relative strength of 
instability (distance from the threshold): 

I) Strong instability \C’rl > C’v,,, \Cil >> Ciw 
ZZ) Weak instability lCrl - C,,,, ICil - Ci,, 

and by the type of impedance: 
a) Reactive impedance IC,( > ICil (or IZil > IZrl) 
b) Active impedance lCrl < ICil (or (IZil < IZrI) 

The quantities C,,,, Ci,r are the critical (i.e.corresponding 
to the stability border) values defined by the ratio G/C;. 
Stability border in C,, Ci plane is shown in Fig.5. 

Examples of the time dependencies of centroid position 
t(t) and emittance u(t) = ((2”)) (averaged over the parti- 
cles and the fast synchrotron oscillations) for four different 
scenarios are shown in Figsl-4. Time scale is given in 
turns, and the scaling factor is the instability rise time in 
the absence of tune spread rgr = l/Im(Aw,). 
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Fig.1. (a) Centroid oscillations y = i?(t) and (b) 
Emittance growth u(t) for the case of (Strong instabil- 
ity, Reactive impedance) with C, = 4.16, Ci = 1.65, 
and r9r = 188.. 
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Fig.2. (a) Centroid oscillations y = z(t) and (b) 
Emittance growth u(t) for the case of (Strong insta- 
bility, Active impedance) with Cr = 1.18, Ci = 4.40, 
and rgV = 142. 
The centroid oscillations in Figs.l-4 present itself a 

fast-oscillating sinusoidal signal (with the synchrotron fre- 
quency) with a slow-changing envelope. The initial growth 
demonstrates the saturation at some level. After that, one 
observes some apparently random “turbulent” oscillations. 
In the Strong instability regime the envelope of oscillations 
grows monotonically until the saturation. For the Weak 
instabili2y, the envelope of oscillations is not a monotoni- 
cally growing function of time even before the saturation. 
The first maximum in the envelope of oscillations occurs 
early before the saturation and is quite small. It is followed 
by several more maxima of increasing amplitude before the 
saturation. The maximally attainable amplitudes of cen- 
troid oscillations are much smaller than in the case of a 
strong instability. 
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Fig.3. (a) Centroid oscillations y = i?(t) and (b) 
Emittance growth u(t) for the case of (Weak insta- 
bility, Reactive impedance) with Cr = 1.25, Ci = .49, 
and rs,. = 315.. 
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Fig.4. (a) Centroid oscillations y = Z(t) and (b) 
Emittance growth a(t) for the case of (Weak insta- 
bility, Active impedance) with C,. = .24, Ci = .89 
and r9r = 175.. 

IV. BEAM SPLITTING. 

The IIb (Strong instability, aclive impedance) example of 
Fig.2 shows peculiar non-decaying and even slightly grow- 
ing oscillations after the saturation. More insight into this 
behavior is provided by a few phase space snapshots in 
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Fig.Sc. Time labels are in the same scale as in Fig.2a. 
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Fig.2c. Phase space snapshots for the parameters of 
Fig.2a and b. 
One can see that the particles that happen to be at the 

larger radia (amplitude of oscilla.tions) at the moment of 
saturation start moving toward increasing radia and finally 
form a distinct beamlet that is separate from the core of 
the beam. This beamlet does not decohere but oscillates 
with increasing amplitude as a rigid entity . 

The results of a special-purpose series of simulations to 
explore the onset of beam splitting are presented in Fig.5. 
The beam splitting was diagnosed by observing a non- 
decohering beamlet in the phase space. 
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Fig.5 State diagram of instability. I is the beam split- 
ting region, II is stable region and III is unstable, no 
beam splitting region. 
One interesting feature of Fig.5 is the overlap of stabil- 

ity border and splitting border for negative C,.. For large 
negative C, one can observe that the beam does not actu- 
ally split, but rather oscillates as a whole with increasing 
amplitude without decohering. 

The border of the beam splitting is a “soft” one, i.e. 
the percentage of particles trapped in the “beamlets” is 
approaching zero when approaching the border. In some 
cases one can also see several “beamlets” succesively split- 
ting from the core of the distribution. 

V. DISCUSSION AND CONCLUSIONS. 

The most interesting nonlinear effect observed is the beam 
splitting phenomenon. We suggest to explain, or rather in- 
terpret it as the trapped-particles nonlinear modes, in ex- 
tension of a similar concept of persistent nonlinear (BGK) 
waves in plasma physics (see, e.g. /6/). We expect by 
that analogy that in our system a group of particles can be 
trapped, under certain conditions, near the center of self- 
driven nonlinear resonance. The elongated shape of the 
“beamlet” in Fig.Pc corraborates that interpretation. The 
resonant frequency will change in time under the influence 
of (anti)dissipative impedance component Zr, carrying the 
trapped particles towards larger radia. The difference with 
conventional BGK modes is in this (anti)dissipation in the 
system causing the frequency sliding. We suggest thus the 
term “sliding trapped (BGK) modes”. 

Beam turbulence is another important class of essen- 
tially nonlinear phenomena. Even when after the satura- 
tion of instability the emittance becomes large enough to 
make a beam stable for any smooth bell-shaped distribu- 
tion, the small-scale “microstructure” of the density can 
persist in the beam for a long time, causing random-like 
low-level centroid oscillations and slow emittance growth. 

In our case of fast synchrotron oscillations SW, << wI 
emittance growth can be related to the amplitude of cen- 
troid oscillations 2 = asin(w,t) through the convinient 
scaling law: 

da A2 

dt=Tgr (5) 

where r9r is the instability rise time in the absence of 
the tune spread rsr = I*. A theoretical quasilin- 
ear “overshoot” approach /7/ ior predicting b(t) and A(t) 
was developed in Ref./71 along the same lines as in the 
coasting beam theory 12-3 /. 
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