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1. Introduction

The physical length of accelerator systems presents
computational difficulties for three-dimensional discrete-
particle simulations of the dynamics and emittance growth
in beam transport. An alternative to the discrete-particle
approach is a high-order moment equation model, which
is an extension of envelope equations formulated first by
IWapchinskij and Vladimirskij! and later adapted by Lee,
Close and Smith?.

Chernin® has derived a beam envelope equation from
the equations of motion for a mono-energetic particle beam
in a magnetic field that is linear in the transverse coor-
In this work we are interested in beams with
a spread in energy, and transport systems with a non-
linear transverse dependence of the magnetic field. For
this type of system the spatial coordinate along the beam
motion cannot be used as the time variable; faster par-
ticles will overtake the slower particles as time evolves.
We present relativistically covariant moment equations for
modeling beam transport, based on the work of Newcomb?
and Amendt and Weitzner®. The beam is described by a
set. of partial differential moment equations, instead of a set
of ordinary differential envelope equations. Our formalism
is based on transverse averages of the moment equations
obtained (rom the relativistic Vlasov equation. The spatial
coordinate along the beam motion and time are the only
independent variables. The moment equations are closed
by setting higher order correlation functions to zero. A
sitnilar formulation of moment equations by Channel and
co-workers® used spatial averaging in all three coordinates
to model a bunched beam with time as the only indepen-
dent variable. For bunch lengths that are large compared
to the betatron wavelength, it is impractical to carry suffi-
ciently high longitudinal moments to model the oscillations
within the bunch.

dinates.

2. Formuation

VWe denote the time ¢ and local Cartesian space coor-
dinate (2!,22, 2%), replacing the usual coordinate (z,y, z),
where 23 is measured along the beam motion direction
and 2! and 2? are the transverse directions. We define
x? = ¢f, where e is the speed of light, so that space-time
1s parametrized by z#, u = 1,2,3,4. We use a summation
convention, and assume that Latin subscripts and super-
scripts, ¢, 7, &, 1, are summed from one to three, while Greek
subscripts and superscripts are summed from one to four.
The space-time metric (ds)? = dzidz® — ¢?(dt)? becomes
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(ds)? = dz*dz”g,,, where the non-zero elements of the
metric tensor g, are g;j = 8;; and gas = —1. The metric
tensors g,, and ¢g#”, which is defined so that g,,g** = 62.,
are used to to raise and lower indices covariantly. The
usual three velocity v* is extended to a relativistic covari-
ant four-velocity u* by the definitions y=2 = 1 — vivf/c?
and u' = yv',u* = ve¢ so that ubu, = —c%.

The electromagnetic field tensor F,, is antisymmetric
and is given by

E; = clyy = —cly;,
B = Foa=—F39,By = F3; = —F13,B3 = Fi5 = — Iy,

while the Lorentz force on a particle of charge ¢ is q([: +
¥ x B); = qF'"u,/v. The general form of the external
magnetic field of interest can be expressed as

B; = Bi0+Bi1$1+B,'QIL'2+B,'11:L‘1$1+B,‘12.’L‘1.’L‘2+Bi33$21‘2,

where all the coefficients Big, Byg, Bsg, B, .-
functions of z3, with Bjo the dipole, B;; the quadrupole,
and B;j; the sextupole components. The beam distri-
bution function, f(z#,u?), satisfies the relativistic Vlasov
equation, which we express in covariant form as:

.y Bzf_)g are

8 9
(u“er%qu,,-a-?)f:o . (1

where m is the particle mass. The volume element
dw = dul'du®du®/y in the four-momentum space is in-
variant under a Lorentz transformation. Since the trans-
verse coordinates, z! and z2, are invariant under a Lorentz
transformation, we define an invariant phase space vol-
ume element under a Lorentz transformation to be dQ =
dz'dz?duldu®dud/y, and a phase space average (X) =
! [ X fdQ, with h = [ fdQ. We also define a second
order correlation function:

[ubu’] = h~? /f(u“ — {(u*))(u” = {u¥))dQ, (2)

and similar definitions for the third order correlation func-
tions.
The lowest moment of the Vlasov equation gives

0

Fph(u’) = 0. (3)

9 ., 3
Egh(u Y+
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With Eq. 2 multiplied by uv” and u’u* then integrated
over df2, we have:

a v 8 v q v
Wh(u% )+ 51;—4’1(“4“ )= —h(Fu), o (9)

%
—(—h(u3u”u)‘) +

q
53 —h{u*u’u?) = Tn—h((F"“uuuA)

5 (5)

+ (FMu,u”)).
There are four independent equations represented in Egs.
4 and ten in Eqs. 5. Equations 3 to 5 are basically the
same as the fluid equations of Newcomb* and Amendt and
Weitzner®, with the additional averaging over the trans-
verse coordinates. Since F'# depends on the transverse
coordinates, Egs. 4 and 5 cannot be closed without intro-
ducing the spatial moment equations:

—a—h(usx") +

2 ohutsy =), (6)

ozt

—?——)L(usu”xi) —+ —a—h(u4u"1:i) = h{u’v')

dx3 ozt ] " ,~ (7)
+ -;;h(F uyz'y,

g%lz(usa:imj) + %h(u"x‘z” = h(z/u') + h{z*uw?), (8)
for i,j = 1,2 only.

Physical meanings can be attached to these moments.
The first order moments (z!) and {(x?) denote the cen-
troid position, and {(u'), (u?), (u3) and (u*) are associated
with the beam current and density respectively. The sec-
ond order spatial correlations [z'z] with i, j = 1,2 define
the transverse beam envelope ellipse. The second order
momentum correlations [u¥u#] are the thermal momen-
tum/energy spread. The second order cross correlations
[+'u”] are the current and density dipole moments.

To allow easier numerical solution, consider a new gen-

eral variable y* such that y! = 1, 3 = z!, y® = 2%,

vyt =l y® = u?, y® = 3, and y” = u?. The twenty-eight
equations represented in Eq. 3 thru 8 can be obtained by

multiplying Eq. 1 by y*y* and integrating over d.

d 3, A,V 9 4, A, v\
El—ﬁ—h(u vy )+5;3h(u v'y”) =T\, v)+T(v,A) (9)

where

0, A=1;
T\ v) =< [yu1fdQ, A=2or3; (10)
L [y FA=3ky, fdQ, A =4thruT

Te close the second order system of equations we assume
{liat correlations above second order are zero. This still
allows third order moments to be nonzero. The closing
condition creates several equivalent families of independent
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variables: {h(y*y"4u®)} and {h{y*y*u*)} where A=1to 7
and v = A to 7, {h, (y*y”)} where A = 2to 7and v = A
to 7, or {h,{y*),[y*y*]} where A=2toTand v = A +1
to 7. Note that each set has twenty-eight elements. The
natural set of independent variables to advance in time is
{h{y*y*u*)}. At each cell in z3 these 28 variables describe
the moments of f when correlations above second order
are zero. To solve this system of equations we need to cal-
culate h{u3y*y”) and I'(}, v) after each time advance. We
need to relate {h{y*y”u*)} to the 84 non-zero third order
moments, {k, (y*y’y*)}. We define [X, ] = h(z*y"u?),
and get from the third order correlation functions,

o] = Aty ] + [L A ) + [L vl + [L A1)
—2[1, 11N (")
(11)

With this a mapping from [X,v] to {h, (¥ y"y*)} is de-
rived. To close the n’th order system of equations we
assume that correlations above order n are zero. Fach
order has a different closing condition, thus each or-
der has a different mapping from {h{y*1y*?---y**)} to
{h, (yAx TR y*“‘“)}.

For second and third order systems, the systems have
28 and 84 equations respectively. Currently our computer
model allows a fourth order system, which has 210 equa-
tions. The general expression for the total number of equa-
tions in an n-th order system can be expressed as:

n min(6,m)

1+Y Y. cferit
m=1 i=1

This gives 462 for the fifth order, and 924 for the sixth
order systems. The advantage of Eqs.(9)-(11) is that they
can be easily manipulated symbolically.

3. Space Charge Model

A space charge model has been implemented to in-
clude the image charges of the metallic boundary and the
longitudinal component of the space charge fields. The
model assumes that the charge density, p, can be approx-
imated by a two-dimensional distribution of charged rods
inside a cylindrical metallic pipe;

N
p= gles,t)g(&— ), (12)
i=1

where g is the spatial distribution function for the fi-
nite size charged rods whose location are independent of
z3. Note that g depends on z;, and z3, while ¢; de-
pends only on z3. The charges on the rods, g;, are
chosen to be consistent with the spatial moments. In
the second order moment system there are six spatial
moments, and therefore we have N = 6 and a matrix
equation to relate the coefficients ¢; with the spatial mo-
ments: hX = MQ, where M is a 6 x 6 matrix whose
elements are of the form fx;";r?g(i' — &;)dzydro, with
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kidi=12and m+n < 2 X and Q are column matri-
ces such that XT = (1,(z1), (22}, (z121), (z222), (z122))
and QT = (q1,...,¢s). Equation (15) can be easily inverted
to express g; in terms of the spatial moments.

The image charges of these rods are easy to determine.
For a charge rod located at z; with a ch_‘arge ¢; the image is
located at :c_Z- with charge —g;, where z/ is along the same
direction outside the metallic cylinder with a magnitude
a”/|%;], and a is the radius of the cylinder. The electric
field due to the charged rods inside the cylinder in the
beam frame can be written as

—‘f:Zq,

This result can be transformed back to the laboratory
frame. With this simplified model, the self-field contri-
bution to moments involving F”# can be readily expressed
in terms of other moments retained in the system and a
close set of equations can be achieved.

N -~
-z
—2:‘1-“:‘—7-
| — =]

i=1

(13)

3. Results

The High-Order Moment (HOM) model agrees with
SAIC’s “ABBY”3 code, a linear envelope model for the
steady state evolution of a monoenergetic beam. To test
the effect of energy spread in the HOM model, we injected
two monoenergetic circular beams at z = 0 with v’s of
3 and 3.1, respectively, into a mismatched constant guide
field. Each beam will independently exhibit betatron oscil-
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lations in the beams radius as a function of the distance of
propagation, z. The space charge model has been turned
ofl to eliminate any interaction between the two beams;
the addition of the results from an envelope equation will
be the exact solution. Figure la shows the expected beat
pattern in the (z'z') moment caused by the slight differ-
ence in frequencies of the betatron oscillations. The HOM
model, when retaining up to third order correlations, does
uot capture this energy mixing. The average of the two
betatron frequencies developes in time as shown in figures
Ib and lc. To capture the effects of this energy spread
fourth order correlations must be retained (fig. 1d).
* Work supported by DARPA/DSO
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Fig. 1: Envelope solutions for a beam with energy spread.
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