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1. Introduction 

The physical length of accelerator systems presents 
cort~put~ational difficulties for three-dimensional discrete- 
particle simulations of the dynamics and emittance growth 
ill beam transport. An alternative to the discrete-particle 
approach is a high-order moment equation model, which 
is a11 estcnsion of envelope equations formulated first by 
liapchinskij and Vladimirskijl and later adapted by Lee, 
Close and Smith’. 

Chcrnin3 has derived a beam envelope equation from 
tllc equat,ions of motion for a mono-energetic particle beam 
iu a inagnetic field that is linear in the transverse coor- 
tli~l~~ks. In this work we are interested in beams with 
a spread in energy, and transport systems with a non- 
linear t,ransverse dependence of the magnetic field. For 
t.llis type of system the spatial coordinate along the beam 
lllotiou cannot be used as the time variable; faster par- 
ticks will overtake the slower particles as time evolves. 
\\‘c present relativistically covariant moment equations for 
modcling beam t,ransport, based on the work of Newcomb 
n11c1 rirncndt and Weitzner5. The beam is described by a 
set. of partial differential moment equations, instead of a set 
of ordinary differential envelope equations. Our formalism 
is I~~sed on transverse averages of the moment equations 
obt nincd from the relat5ivistic Vlasov equation. The spatial 
coordinate along the beam motion and time are the only 
in,lepcndent variables. The moment equations are closed 
1)~. sctt,ing higher order correlation functions to zero. A 
siirrilar formulation of moment equations by Channel and 
co-worker8 used spatial averaging in all three coordinates 
to nioJe1 a bunched beam with time as the only indepen- 
dciit variable. For bunch lengths that are large compared 
t,o the betatron wavelength, it is impractical to carry suffi- 
cicntly high longitudinal moment,s to model the oscillations 
wit bin the bunch. 

2. Formuation 

1l.e denot,e the time 1 and local Cartesian space coor- 
dinate (2~‘? X2 , x3), replacing the usual coordinate (2, y, z), 
where s3 is measured along the beam motion direction 
a11d x1 and x2 are the transverse directions. We define 
2” = cl! where c is the speed of light, so that space-time 
is I~aranrctrized by x” I IL = 1,2,3,4. We use a summation 
corlvcntion, and assume that Latin subscripts and super- 
scl,il>t,s, i, j, k, 1, are summed from one to three, while Greek 
sul)scripl,s and superscripts are summed from one to four. 
Tllc space-t,ime metric (ds)’ = dxcidxi - c2(dt)’ becomes 
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(ds)2 = dx”dx”gllv, where the non-zero elements of t,lie 
metric tensor gPv are g;j = bij and g44 = -1. The metric 
tensors grv and gJ‘“, which is defined so that gP,,gvx = 5;: 
are used to to raise and lower indices covariantly. The 
usual three velocity ui is extended to a relativistic covari- 
ant four-velocity UP by the definitions ym2 = 1 - Y%~/c’ 
and ui = yv”, u4 = yc so that upuP = -c2. 

The electromagnetic field tensor Fti,, is antisymrnetric 
and is given by 

Ei = cFi4 = -cFbi, 

B1 = F23 = -F32,B2 = F31 = -F13,B3 = F12 = -F2,, 

while the Lorentz force on a particle of charge Q is q( c + 
v’ x Z)i = qFifi~,/-y. The general form of the external 
magnetic field of interest can be expressed as 

Bi = Bio+Bilx1+Bi2x2+Bi11x1x1+Bi12x1x2+Bi?~x2x2. 

where all the coefficients Brs, Bze, B30, BIl, . . . . RZZ3 arc 
functions of Z3, with Bio the dipole, Bij the quadrupole, 
and Bdjk the sextupole components. The beam distri- 
bution function, f(xJ‘, ui), satisfies the relat&ivistic ~%so~ 
equation, which we express in covariant form as: 

a up--+ axp ;F’“zl,& f =O 

where m is the particle mass. The volume element. 
& = du’du2du3/y in the four-momentum space is in- 
variant under a Lorentz transformation. Since the trans- 
verse coordinates, x1 and x2, are invariant under a Lorent,z 
transformation, we define an invariant phase space vol- 
ume element under a Lorentz transformation to be dfl = 
dx’dx2du1du2du3/y, and a phase space average (X) = 
h-’ IXfdSl, with h = s fda. We also define a second 
order correlation function: 

[u%f] = h-l /f(uP - (tP))(u~ - (u’))d12, (2) 

and similar definitions for the third order correlation func- 
tions. 

The lowest moment of the Vlasov equation gives 

khtu3) + ax4 dh(u4) = 0. 
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11Yt.h Eq. 2 multiplied by u” and 21“~’ then integrated 
over dQ, we have: 

u4u”) = ;h(F”“u,), (4) 

u3uVuA) + &lh( u4u”ux) = ;h((FY’u,uX) 
(5) 

+ (F%$f)). 

There are four independent equations represented in Eqs. 
4 and ten in Eqs. 5. Equations 3 to 5 are basically the 
same as the fluid equations of Newcomb and Amendt and 
IYeit2ner5, with the additional averaging over the trans- 
verse coordinates. Since F”’ depends on the transverse 
coordinates, Eqs. 4 and 5 cannot be closed without intro- 
ducing t,he spatial moment equat,ions: 

u4xi) = h(u”), 

-&h(u3uyxi) + ax4 ah( u4u”xi) = h(u’u’) 

+ ;h(Fv”u,x”), 
(7) 

u4x”xj) = h(xbi) + h(xkj), (8) 

for i, j = 1,2 only. 
Physical meanings can be attached to these moments. 

Tile first order moments (2’) and (x2) denote the cen- 
troid position, and (u’), (u”), (u”) and (u’) are associated 
wit11 the beam current and density respectively. The sec- 
ond order spatial correlations [zixj] with i,j = 1,2 define 
tllo t,ransverse beam envelope ellipse. The second order 
rllomentum correlations [uVup] are the thermal momen- 
t,um/energy spread. The second order crms correlations 
[z’ u”] are the current and density dipole moments. 

To allow easier numerical solution, consider a new gen- 
eral variable yx such that y1 = 1, y2 = x1, y3 = x2, 
y4 zz 111) y5 = u2, y6 = 213, and y7 = u4. The twenty-eight 
equations represented in Eq. 3 thru 8 can be obtained by 
multiplying Eq. 1 by yxy” and integrating over dSZ. 

dh(u4yXyv) = l-(x, y) + r(y, A) (9) 

0, x = 1; 
l-(X, 11) = J yvuA-‘fdi2, X = 2 or 3; (10) 

$ J y”FXm3~~up fdR, X = 4 thru 7. 

‘1’~. close t,he second order system of equations we assume 
t,llat correlations above second order are zero. This still 
iIIlo\\~s t.hird order moments to be nonzero. The closing 
colltlit ion creates several equivalent families of independent 

variables: {h(yxy”u3)} and {h(yxy”u4)} where X = 1 to 7 
and v = X to 7, {h, (y’y”)} where X = 2 to 7 and v = X 
to 7, or {h, (y’), [y’y”]} where X = 2 to 7 and v = X + 1 
to 7. Note that each set has twenty-eight elements. The 
natural set of independent variables to advance in time is 
{h(yxy”u4)}. At each cell in z3 these 28 variables describe 
the moments of f when correlations above second order 
are zero. To solve this system of equations we need to cal- 
culate h(u3yXyV) and ro(, V) after each time advance. We 
need to relate {h(y’y” u”)} to the 84 non-zero third order 
moments, {h, (y’y”y”)}. We define [A, V] - h(yXyvu4), 
and get from the third order correlation functions, 

IV, 4l = h[yAd’u41 + 11, ~I(Y~Y”> + IIW(Y~) + IL XII(Y~) 

- 2P,ll(YX)~Y”L 
(11) 

With this a mapping from [X, V] to {h, (y’y”y”)} is de- 
rived. To close the n’th order system of equations wc 
assume that correlations above order n are zero. Each 
order has a different closing condition, thus each or- 
der has a different mapping from {h(y’l yXa ... yx-)} to 
{h, (yX’yXa. -. ~~“‘1)). 

For second and third order systems, the systems have 
28 and 84 equations respectively. Currently our computer 
model allows a fourth order system, which has 210 equa- 
tions. The general expression for the total number of equa- 
tions in an n-th order system can be expressed as: 

,J min(6,m) 

1+ c c ci”c;m_;’ 
m=l i=l 

This gives 462 for the fifth order, and 924 for the sixt.11 
order systems. The advantage of Eqs.(S)-(11) is that, t,hey 
can be easily manipulated symbolically. 

3. Space Charge Model 

A space charge model has been implemented to in- 
clude the image charges of the metallic boundary and the 
longitudinal component of the space charge fields. The 
model assumes that the charge density, p, can be approx- 
imated by a two-dimensional distribution of charged rods 
inside a cylindrical metallic pipe; 

N 

(12) 
i=l 

where g is the spatial distribution function for the fi- 
nite size charged rods whose location are independent of 
~3. Note that g depends on ~1, and x2, while qi de- 
pends only on x3. The charges on the rods, qi, are 
chosen to be consistent with the spatial moments. In 
the second order moment system there are six spatial 
moments, and therefore we have N = 6 and a matrix 
equation to relate the coefficients qi with the spatial mo- 
ments: hX = hrfQ, where M is a 6 x 6 matrix whose 
elements are of the form Jtrx;g(Z - x<)dxldxz, with 
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b. 1 = 1,2 and m + n 5 2, X and Q are column matri- 
ces such that XT = (1, (x1), (x2), (z~z~), (z2t2), (2122)) 
and QT = (ql, . . . , ~6). Equation (15) can be easily inverted 
to express qi in terms of the spatial moments. 

The image charges of these rods are easy to determine. 
For a charge rod located at Z< with a charge qi the image is 
located at ~7 with charge -qi, where ~1 is along the same 
direction outside the metallic cylinder with a magnitude 
a3 /IJ< 1, and a is the radius of the cylinder. The electric 
field due to the charged rods inside the cylinder in the 
beam frame can be written as 

l!?(S) = 2 Q. z- cl?; -2 -! i-z. 
i=, q-q i=lqim. (13) 

This result can be transformed back to the laboratory 
Srnrne. \Vith this simplified model, the self-field contri- 
bul,ion to moments involving F”p can be readily expressed 
in t,erms of other moments retained in the system and a 
close set of equations can be achieved. 

5. Results 

The High-Order Moment (HOM) model agrees with 
SMC’S “i\BBY”3 code, a linear envelope model for the 
steady state evolution of a monoenergetic beam. To test 
rhe effect of energy spread in the HOM model, we injected 
two monoenergetic circular beams at z = 0 with 7’s of 
3 and 3.1, respectively, into a mismatched constant guide 
field. Each beam will independently exhibit betatron 
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ldl,ions in the beams radius as a function of the distance of 
propagation, z. The space charge model has been turned 
oil’ to eliminate any interaction between the two beams; 
the addition of the results from an envelope equation will 
be the exact solution. Figure la shows the expected beat 
pattern in the (z’z’) moment caused by the slight differ- 
euce in frequencies of the betatron oscillations. The HOM 
model, when retaining up to third order correlations, does 
not capture this energy mixing. The average of the two 
Matron frequencies developes in time as shown in figures 
lb and Ic. To capture the effects of this energy spread 
fourth order correlations must be retained (fig. Id). 
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Fig. 1: Envelope solutions for a beam with energy spread. 
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