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Abstract - The quadrature response of longitudinal 
impedance is shown to be the effective impedance for 
the beam instability. The results of the application of 
this formulation are compared with that obtained 
using the Robinson-Pedersen approach and the Sach- 
erer integral equation. The formulation is further gen- 
eralized to the rigid bunch motion using signal 
analysis method, where a form factor shows up natur- 
ally. Finally, the formulation is applied to solve the 
coupled bunch instabilities. Examples of the AGS 
Booster and the AGS coupled bunch instabilities are 
used to illustrate the applications of the formulation. 

I. The New Formulation 
In the longitudinal motion, a synchrotron oscil- 

lation is modulated by the RF carrier. The beam 
current induced voltage through the longitudinal 
impedance may affect the synchrotron oscillation and 
cause the beam instability. 
A. Beam Dynamic Model 

A beam dynamic model is shown in Fig.1, where 
.3 is the Laplace operator, ~0 and WRF are the revolu- 
tion and RF frequencies, respectively. AVB is the 
equivalent RF gap voltage deviation caused by the 
beam motion, and AV&, caused by the cavity vol- 
tage variation. IB is the beam current amplitude of 
the fundamental frequency, i.e., the RF frequency. 
Finally, Z,(s 

h impedance wit 
represents the effective longitudinal 
respect to the beam instability. In 

the block diagram, the upper loop represents the syn- 
chrotron oscillation, as shown in [l]. The lower loop 
represents the effects of the beam current to the cavity 
voltage through the longitudinal impedance. 

Z,(s) 

Fig.l. Beam Dynamic Model 
B. Impedance 

We use both Laplace and Fourier transforms. 
For instance, an impedance in the Laplace form can be 
Z(s+jwRF), and its counterpart in the Fourier form is 
written as Z(W+WRF). Consider a general situation of 
the modulated input and output. Let the input signal 
of a system be f (t) and the output be g(t). The 
input signal is assumed to be a low frequency signal 
f~( t) modulated by an RF carrier, say COSWRF t , i:e., 

‘;Ft )5(w) z?i, (t )+FL(wj to denote the FE::! 
fct) = f @) '3s WRFt 
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pairs, we have, 

F(W) = $ (FL(W+WRF)+FL(W-WRF)) (1) 

ho for f l(t) = Jo sin WRF t , we have, 

F,(w) = + (FL(W+WRF)-FI,(W-WRF)) (2) 

Under the modulation of the frequency W,QF, the in- 
phase and quadrature responses of the impedance Z(w) 
are determined by [2], 

ZP(w) = i (Z(W+WRF)+Z(W-WRF)) , (3) 

ZQ(W) = $ (Z(W+WRF)-Z(w-WRF)) (4) 

respectively. We also define Gp(w) = FL(w)Zp and 
Go(w) = F (w)Z,(w). Using 
~~(t)--+Gg?w) for F 

gp(t)-+GP(w 
w) 

and 
ourier pairs, the total response of 

the modulated signal F(w) in (1) through the 
impedance Z(w) is, 

g(t) = !?P(t) cOS wRFt + gQ(t) sin wRFt (5) 

Using (l-41, the equation (5) can be shown to be, 

GbJ)=eJw)) (6) 

therefore (5) is proved. When the beam passes the 
cavity gap, the in-phase response due to the cavity 
impedance, which is modulated by cos WRF t , provides 
an almost constant force in the beam synchrotron 
oscillation, which has little effect on the beam instabil- 
ity. On the other hand, since the quadrature response 
is modulated by sin WRF t it is in the same fashion as 
that of the RF driving wave and functions as the same 
as the RF driving wave. Therefore, if the instability of 
synchrotron oscillation is concerned, the quadrature 
response represented by (4) becomes a dominant effect. 
Thus the effective longitudinal impedance is, 

&4(8)=z~(S)= + (Z(8+jWRF)-z(8-jWRF)) (7) 

Consider an RF cavity with the resonant fre- 
quency wR, the shunt resistance R, the half- 
bandwidth 6, and the quality factor Q. Under the 
conditions of Q >>l, WRF 
1+“& I>> IS2 1 =W2, theyo$i<i&z %&.%:C:~ 

the RF cavity is, 

&v(8) = 
-R t?tan#, 

82-t2US+U2(1i-t~24z) 
(8) 

where the detuning angle #Z=tan-’ ((wRF-wR)/cT). 

C. Stability 
To study the beam stability under the influence 

of the longitudinal impedance of RF cavity, we can 
write the following equation from Fig.1, 

4= 
eWOWRFflVCOS+.5 

d+ 
eWOWRFv 

27rP2E s2 27@“E s2 
ZM~)~B~ (9) 

© 1993 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material

for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers

or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

PAC 1993



Using w~=-ewoWRFqVcos4S 
and generator current ratio i 

(27r,d2E) and the beam 
=I,/Ioo=IBR/V, the 

characteristic equation of the system becomes, 

s2+w; = 
wj Ya?tan4,/cos$, 

82-k2fl8 i-u2(l+tan24Z) 
00) 

Using Routh-Hurwitz table, it is straightforward to 
find the stability conditions as tan4z > 0 and 
Ytan4zcos24z < cos4.s, which are called the first and 
second Robinson criteria, respectively. 

In deriving the transfer function ZM(S) in Fig.1, 
the in-phase and quadrature transfer functions Zp(s) 

are used. In the Robinson - Pedersen 
the beam to cavity phase and amplitude 

transmissions and their cross transmissions Z,, (s), 
Z,,(s), and Z[9(9), Zcp(s) are used to derive the 
total equivalen transmission from the beam phase 
variation to the induced cavity voltage phase devia- 
tion. In Fig.2, typical step responses of the transfer 
functions are plotted, which show the difference 
between the two types of the transfer functions, and 
the two approaches as well. 

i(YIl~ zap(rX-Zpa(r) ; 
-scofi I 

al a2 a3 a4 k5 a6 a7 as a9 1 
Trms in Scmnd SW 

Fig.2. Step Reaponcles for the Transfer Function& 

Using Sacherer integral equation [4] for the 
dipole motion, we get the following equation, 

8nwjIo 
a2+4 = vcos4s (~om~?(r)$dr)&(8) (11) 

where Ic is the beam average current, $c is the bunch 
stationary distribution, and r is the amplitude of the 
beam phase oscillation. Substituting (8 , 
L:jimi; ;kewn,“,o be equivalent to (101, 

the equation 
except for a 

II. Generalize the Formulation 
To generalize the formulation to the rigid bunch 

motion, the beam current signal needs to be analyzed. 
For each frequency component in the signal, the 
corresponding effective impedance can be found, which 
needs only a trivial modification from the results 
shown in Section I. The summation of the effects of 
the impedance due to each component in the signal is 
the force the beam received. 
A. Signal of rigid bunch motion 

Let TRF be the RF period, TRF=~“/WRF 
beam longitudinal current signal with N particles 
bunch is, 

in t 

i(t) = Ne 5 6 (t-kTRF+ TCOSWS~TRF) (12) 

where r is the synchrotron oscillation amplitude in 
time. The spectrum of this signal is calculated as [l], 

I(w) = 2r10 f) j” J,,, (w7) 6 (w-p wRF-m ws) (13) 
p,m-- 

We further assume that the bunches have a Gaussian 
distribution, which is chosen for convenience, and with 
an effective bunch length TL. Using the phase oscilla- 
tion amplitude ~=WRFT the equation (13) becomes [l], 

I(w) = 2?r10 2 j” Jm (rw/wRp) 

P,m- 

x e -(7‘~/wRF w2 
6 (w-p WRF-mwS) (14 

B. Generalization 
To compare the rigid bunch signal represented 

by (14) with the idealized signal, we may write the 
signal used to develop the formulation in Section I as 
ii( t ) = 1~ r cos ws t sin WRF t , whose spectrum is 

I’(w) = 2*18$ c (-p) 6 (w-p”RF-mwSi (15) 
P*m-Ztl 

The first difference between the real rigid bunch 
motion signal represented by (14) and the idealized 
signal (15) is that (14) contains not only RF frequency 
modulation but also RF harmonics modulation, i.e., 
by the frequencies p WRF, ]p ] > 1. It is shown (11 that 

mo!lJationQ 6 
2, w = 2 w) is valid not only for the RF frequency 

ut also for the RF harmonic modulation. 
For the carker with the frequency p WRF, the variable 
WRF in (4) should however be replaced by p WRF. In 
the system synthesis, firstly these frequency com- 
ponents in the rigid bunch motion signal should be 
identified, then the corresponding longitudinal 
impedances should be used to find the induced forces. 
The combined force is the one the beam received. 

The second difference of (14) from (15 
contains not only dipole motion but also 
motion, i.e., mws, Im l>l. 

h 
is that it 
igh mode 

The third difference is that in (14) the spectrum 
amplitude is affected by the Bessel function, the bunch 
distribution and the bunch length. The combined 
influence of these factors can be called a form factor. 
C. Form factor 

Consider the most important case of dipole 
motion with RF frequency modulation, where p 
and m = fl. We write (14) as, 

= rtl 

I(W) = 8rloJdr IW I/wRF)e 
-(rL wI(JRF )*/32 

x-& c t-p) 6 (w-pWRF-mWS) (16) 
p,m-fl 

For the delta distribution, 1, = 21c, the form factor 
can be written as, 

F _ I(W) _ 2Jl(r Iw IIwRF) ,-(y~/w~~)*/32 

II(W) r 

~ 2J~(r) ,-(rLw/uRF)*/32 
r (17) 

where in the simplification we used Iw I M WRF . 
Consider the longitudinal dipole motion dis- 

cussed in Section I again. The form factor F in (17 
has to be multiplied to the scaling IB in Fig.1, an 1 
therefore also to Y = IBR /V in (10). Thus, 
Yi = FY will replace Y in the second stability equa- 
tion. Since F <l, the stability margin is extended. 
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III. Coupled Bunch Instabilities 
A. Coupled bunch motion 

Let there be h bunches, and let ta be the coupled 
bunch mode number. There will be n = 0, 1, .,., h -1 
coupled bunch modes [4]. The spectrum of the signal 
observed from the wall monitor becomes, 

I(w) = 2rlc 2 j” .I, (rw/wRF) 
p,m--03 

xe-h+RF)21~2 &(w-p~~~-nw~-rn~S) (18) 

The coupled bunch mode of n wa can be assumed to be 
a rigid wave. For an individual bunch, the modulation 
effect of the beam current signal due to the coupled 
bunch mode is demodulated. By the same argument as 
in Section I, the quadrature response represents the 
effective longitudinal impedance. Therefore we have 
the following longitudinal impedance, 

n wO+wRF)-Z(u+n q--WRF)) (19) 

B. Coupled bunch instabilities 
If n # 0, then the two spectrum lines of the 

same frequency modulation may be far apart, there- 
fore in general the treatment for the resonator type 
impedance such as that in Section I cannot be applied, 
and the spectrum lines may have to be treated 

dipole upper sideband at 
and let the real part of the 

impedance be R1. x jws, the stability 
equation can be written as, 

2+wj = 
w&F -ws IB FR 1 

2 jVcos9s 
Z(~+WCI+~RF)= 2 vco,.s d c2’) 

Below transition cosbs >O, therefore the upper side- 
band is stable because that the coefficient of s is nega- 
tive. It follows that the lower sideband at 
z(w+wc-wRF), which has a negative sign in (19), is 
unstable, and the opposite above transition. 

It is interesting to revisit the form factor derived 
in Section II. We rewrite it as, 

F _ 2J,(r IW iIwRF) e-(y+RF)2/32 
(21) r 

The simplification of the form factor in (17) cannot be 
made in the case of the coupled bunch mode, since 
now ] w ] is not close to WRF if n # 0, and both vari- 
ables have to be considered in the Bessel function. For 
high frequency, the influen,ce of r shows up, which is 
shown in Fig.3. 

1 

0.8 

0.6 

a4 

a2 

0 

Fr-qumcy in Hz X10' 

Fig.,?. Form Factors with Difcrent r. 

In a small range of r, for instance between 0.01 to 0.2 
in Fig.3, the form factors are approximately the same. 
This shows the reason why we can assume that the 
coupled bunch mode is a rigid wave in the instability 
study. 
C. Ezamples of the AGS Booster and the AGS 

A coupled bunch instability has been excited in 
the AGS booster by tuning a test RF cavity [5]. In the 
booster h is 3, and ~RF was 2.55 MHz. In the test, the 
coupled bunch instability of a dipole mode was 
observed at the first revolution line, i.e., at 850 KHz, 
which implies that n = 2. We have I0 = 0.082 A, 
ds = 0, and V = 30 KY, and 7~=130 nS. The RF 
cavity used to excite the coupled bunch motion has 
approximately a quality factor 2.5 and a shunt resis- 
tance 3 KR, it was tuned at the revolution frequency 
in the test. To estimate the effective resistance FR,, 
the form factor in (21) is used, where the Gaussian 
distribution is still used allowing minor errors. The 
effective resistance of the test cavity is found to be 1 
KG at 850 KHz. The growth rate calculated using 20) 
is 27.7 mS, which is close to the test result of 30 m L . 

In an AGS operation, a coupled bunch instabil- 
ity was observed at the 1.77 GeV front porch, with 
f~~=4.18 MHz, and n=ll ( h=12 ). To find the loca- 
tion of frequency of the exciting resonator, two tests 
were performed, with TL are 46 nS and 70 nS, Ic are 
0.089 A and 0.457 A, V are 260 KV and 184 KV, and 
fs are 1.64 KHz and 1.38 KHz, respectively. The 
observed growth rates are 48 mS and 24 mS, respec- 
tively. Using a moderate r = O.lrL, the resistance 
required to generate the observed growth rates are 
plotted in Fig.4, which shows that at 17.6 MHz the 
required resistances are crossed. The closest unstable 
coupled bunch mode frequency is at 17.1 MHz, there- 
fore Fig.4 shows a possible location of the exciting 
resonator. This rer.ilt agrees to the one obtained by 
different approaches [6]. 

Fqumcy in Hz Xl@ 

Fig.4. Resistances to Excite the Growth Rates. 
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