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The Relativistic Heavy Ion Collider consists of two interlaced plane 
rings, a pair of mirror-symmetric beam injection arcs, a spatially 
curved beam transfer line from the Alternating Gradient Synchrotro~ 
and a collection of precisely positioned and aligned magnets, on 
appropriately positioned support stands, threaded on those arcs. 

RHIC geometry is defined by six beam tossing points exactly 
in a plane, lying precisely at the vertices of a regular hexagon of 
specified size position and orientation of this hexagon are defined 
geodetically. 

Survey control and alignment procedures, currently in use to 
construct RHIC, are described 
l.OVERVIEWOF’IHERINGSUR-WpRocEDuRE 

The RHIC survey is performed in local BNL coordinates, 
directed (for historical reasons) along the BNL road network, at 
know orientations to the machine lattice and the geodetic (Long 
Island) NY State Plane Coordinate System pig. 11. The geometry of 
the RHIC ring and AGS-RHIC transport line are described in 
[6,7,101. 

To generate RHIC geometry, we use a network of control 
monuments, grout-cemented into the tunnel floor. Each monument is 
a hollow stainless steel cylinder, of CERN type pig. 31, placed into 
the floor with its axis locally vertical. 7he monument sockets can 
receive and precisely locate either a cylindrical bushing holding a 
centered surveyor’s target or a 3.5”diameter steel ball containing a 
microscopically centered target. The ball connects to a fiber optic 
jack, to supply bright difI%se target illumination. The ball can be 
rotated, on the monument bushing, to view its target from either a 
horimntal or vertical direction, without change of position of its 
target’s cross hair intersection point. The ball target can then be 
viewed from above, for example, from an exterior survey tower or 
from the side inside the tunnel. 

External control is established by: twelve survey structures spaced 
around the RHIC ring, with pipe penetrations into the tunnel; 
towers and penetrations along the injection arcs; and a tall central 
tower, having clear sight lines to the other towers. Control from the 
end of the injection bend arcs, into the AGS machine, is established 
internally, by survey along the beam transport line into AGS. 

Survey structures range from simple 4 ft. platforms, to 12 foot 
wooden double signal platforms, to National Geodetic Survey steel 
Bilby towers of up to 70 foot height. 

The survey structures contain survey instrument support platforms; 
an aluminum plate bolted onto each platform serves as a supprt 
deck of two horizontal motion translation stages. The upper stage 
holds a tribrach, to locate either a ME-5000 Mekometer EDM, prism 
retro-reflector, or optical plummet. An opening in each stage allows 
downward viewing, through the plummet’s tibrach support and berm 
penetration pipe, to the ball target in the tunnel. The aperture 
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available through the tribrach limits the optical resolution in setting 
the survey instrument directly above the tunnel survey target at the 
tunnel primary control monument. Vertical drops to tunnel targets 
are measured by use of steel tape, with correction for temperature 
and tape weight Survey work was done after sundoun, when 
stable atmospheric conditions were available. At each tower station 
and tunnel monument, temperature was measured to 0.1 deg. C, 
barometric pressure to 0. I millibar, and relative humidity to 2”/4 to 
allow fw correction of refractive index. 

l%e external survey was a termin trilatemtion of the twelve 
towers above the tunnel, and the central tower near machine center. 
‘Ihe P”pose of the survey was to geodetically locate twelve primary 
control monuments in the tunnel, below the vertical earth berm 
penetrations, to generate a primary control monument net inside the 
tunnel. Distances were measured to first and second nearest 
neighbor towers, and to-and-fiorn the central tower, using the ME- 
5000 Mekometer. One exception was a line-of-sight blocked by the 
RI-K office building. Horizontal distances between nearest 
neighbor towers, and between the ring towers and central tower, 
were each approximately 610 meter. Adjusted standard error of the 
distance determinations was one and and a half millimeters, with 
near-circular error ellipses, as expected from the nearly symmetric 
survey geometry. 

A previous survey of seven of the primary monuments and 
central tower, was performed by the National Geodetic Survey, in 
1982, as part ofthe CBA program at BNL. Adjusted positions 
of the eight monuments common to the two surveys, sepamted by 
ten years in time, were compared by means of a Helmert 
Transformation, using GEONET survey codes [ 1,2]. ?he rms 
displacement of corresponding stations from one another was one 
and a haIf millimeters. This suggests that earth shifts were 
insignificant, during this time, 

2. TIJNNEX-Anm AIW SURVEY 
To locate position within the tunnel, and to control placement of 

magnets and support stands, a secondary monument control network 
has been established in the tunnel, connected to the twelve primary 
monuments located during the primary external control survey. 

The control net configuration is a chain of braced quadilaterals. 
Trilateration and triangulation measurements are both used in the 
control survey. Monuments are installed, typically, opposite centers 
of ring quadnrpole and dipole magnets in the arc sections, and more 
densely in the insertion sections. 

Distances along the tunnel are measured with the Kern (LEICA) 
Mekometer-5000 [4, 51. Directions along intermonument lines are 
measured with the Wild (LEICA) T-3000 thecwlolite. F&h of these 
instruments is provided with digital electronic readout and an 
option for either manual or electronic control. The distance mode 
gap bands, in the Mekometer’s, response were calculated in advance, 
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to insure that forbidden distances were not to be measured among 
the shorter survey distances. 

A ZEOS laptop computer, loaded with GEONET [ 1,2] control and 
data uplink sotlware, is used for data acquisition, in a format suitable 
for data basing and reduction by GEONET. Data processing is 
carried out after data tile transfer to a 486 PC or other work station; 
a local area link allows data transfer to the BNL VAX Cluster 
mainframe computers, to provide additional data storage and 
processing capability. When used for control survey, the Mekometer 
and theodolites are mounted on special tripod stands, bolted to the 
tunnel floor, at the monuments to be surveyed, on 2-axis horizontal 
cross feeds. A Kern instrument mount allows each survey instrument 
to be levelled and force-centered so that the instnunent axis coincides 
with the mount axis. In this way a Mekometer, theodolite or optical 
plummet can be mounted at the same horizontal position above a 
monument. The instruments can be located above the target ball at 
the monument to a horizontal rms mdius of two milli-inches. 

Magnet stands are installed using the following procedure. A 
template was fabricated with a circular hole pattern which is the 
horizontal floor projection of the bolt pattern of the magnet support 
stand, @ether with the plan projection of two magnet cryostat 
fiducial target balls, which will lie adjacent to that stand when the 
magnet is installed. The template is surveyed into place by surveying 
the fiducials’ floor projection circle centers to their proper horizontal 
locations. The stand bolt locations are then stencilled onto the tunnel 
floor from the template. To help in initially locating the magnet on 
its stand, the centers of the adjacent magnet fiducial ball projections 
are also located with fine cross marks on the floor. To do the latter 
operation, one uses an optically-centering transfer punch device 
(Scribe-Rite, Tool Components, Inc., Gardena CA) to transfer the 
prism target axis to the punch axis and floor point. 

From the magnet-design-specified locations called out for the 
cryostat fiducial balls on the magnet and the magnet lattice 
coordinates, a data base set of hot-i&al survey coordinates for the 
cryostat fiducials is computed. View directions for theodolite sighting 
of the floor projections of the cryostat fiducials are computed. Also 
the slant distances are computed, of a Distomat EDM mounted on the 
theodolite, to small retro-reflector prisms mounted on the template 
above the fiducial ball projections. The computed distances and 
directions are a data base to allow the template to be surveyed into 
place, from the control monument net. 

Survey data acquisition, reduction and adjustment is done using 
GEONET survey codes [ 1,2]. After inital data reduction, an 
independent adjustment is done using STAR*NET survey c&$3]. 
The latter codes are convenient for blunder detection and survey 
graphical presentations, and are a useful complement to GEONET. 
Model control surveys are simulated using the ERRORP codes of 
GEONET when control survey procedures are to be examined. 
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RHIC dipoles and quadrupoles are provided with two sets of 

fiducial markers: cold mass fiducials and cryostat fiducials. ne 
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Fig. 1 The RHIC Ring Geometery Fig. 2. ?he AGS to RHIC Transport Line 
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Fig. 3. The Ring Monument and Target Ball 
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