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Abstract 

A novel high-gradient waketield accelerator is 
presented in which the drive-beam current leaves behind a 
high-gradient wakefield, accelerating the witness beam to very 
high energy. The theoretical analysis is based on Faraday’s 
law, which provides a second-order partial-differential 
equation of the azimuthal magnetic field, under the assumption 
that pe > > 1. The accelerating field can be more than one 
half of one gigavolt/meter in an appropriate choice of system 
parameters. 

I. INTRODUCTION 

In recent years, there has been a strong progress in 
the high-current electron-beam technology. Electron beams 
with an energy of 10 MeV and a current of 10 kA are easily 
available in the present technology. In addition, a tremendous 
improvement has been made in the effective control of these 
electron beams, including the focus, modulation, and a timely 
termination of the beam current. Thus, the electron beam 
itself is used as a drive current in the wakefield accelerators, 
where a short and intense bunch of electrons passes through 
a plasma1-3 or dielectric waveguide,4-6 leaving behind intense 
electromagnetic field. The axial component of this 
electromagnetic field accelerates charged particles in the 
witness beam, which follows the drive electron beam. Based 
on the transverse magnetic (TM) waveguide modes, a 
preliminary theory5’6 in a dielectric waveguide accelerator has 
been developed to estimate the acceleration field, which is the 
fundamental-radial mode in most cases. However, in reality, 
the acceleration field is a sum of the whole radial modes, 
which is a complicated function of various physical 
parameters, including the geometric configuration, the 
material properties of the waveguide, and so on. In addition, 
evolution of the acceleration field in time is again a sum of 
the every radial-mode evolution. In this regard, I develop a 
fully self-consistent theory of the wakefield accelerators, 
which consists of a waveguide with a ferromagnetic material. 
As will be seen later, the accelerating field is proportional to 
the square root of the parameter p/e, where p and e are the 
permeability and dielectric constant of the waveguide material. 
The higher the permeability, the higher the accelerating field. 
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II. WAKEFIELD FOR THE ACCELERATION 

The theoretical model is based on the induced electric 
field due to decay of the field energy stored in an energy 
storage device. We assume that an electron beam with 
current I(t) propagates through a hole with radius R, in the 
field-energy storage with radius of R2. The energy storage 
device is a waveguide with a ferromagnetic material. 
Whenever the drive-beam current I(t) decreases, the induced 
electric field E,(r,t) appears in the system. The induced axial- 
electric field E, is calculated from the Faraday’s law and 
given by 

E,(R,,t) - - %I'% W,(kR,) - Jo(kR,)12 

fCdt'(~) +Jt-t/L .-w 

(1) 
where Jo(x) is the Bessel function of the first kind of order 
zero, 

c&(t) _ exp(-2y t) c0.N~ t) (2) 

is the time function and [I is the residual conductivity in the 
material although it is very small (zero in a practical sense). 
Substituting Eq. (2) into Eq. (1) and carrying out partial 
integrations in time and radial coordinate, I obtain the 
accelerating field 

(3) 

where the abbreviation E,(t) represents E,(O,t). In obtaining 
Eq. (3), I have neglected the terms proportional to the residual 
conductivity CI. 

For convenience in the subsequent analysis, the 
normalized times TV and r2 are defined by 

r1 - 
c( t-t') c( t-t') 
2R,43 ' 

r2 - 
2R,m ’ 

(4) 
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where we note that rI = R2r2/R1. For R, > > R,, the 
normalized time rl is much longer than the time x2. Making 
use of Eq. (4), we can rewrite Eq. (3) by 

E,(t) --& 
1 

*[sin(2r,x) + +sin(2t,x) 0 
2 

2 R, Jo (R&R, ) -- 
R2 Jo (xl 

sin (2T,x)l . 

In the remainder of this article, the analysis is restricted to the 
case when the inner radius RI of the energy storage device is 
much less than the outer radius R,, i.e., R, < < R,. In this 
limit, we note several points from Eqs. (4) and (5). First, the 
term proportional to sin(2~~x) in the integrand in Eq. (5) 
dominates. The corrections associated with other terms are of 
the order (R1/R2) 1’2 or less. Second, the peak values of the 
integration over the variabIe x in Eq. (5) occur y,yd the 
time t satisfying it m 1, ~~ - 1 and ~2 - (R,/R$ , which 
correspond to the contributions from the terms proportional to 
sin(2rlx), (R1/R2)sin(2r2x) and JO(Rlx/R2), respectively, in 
the right-hand side of Eq. (5). In the early stage, the term 
proportional to sin(2rlx) dominates. In this regard, we keep 
the term proportional to sin(2rIx) in Eq. (5), neglecting other 
terms. If needed, the corrections associated with other terms 
can be calculated in a straightforward manner. 

The integration over the variable x is carried out by 
making use of the integral’ 

/ Jar,) I rl< 1, 
n 

f 0 
-dxJt (x) sin(2r,x) - 

I 
-+a+, rl > 1, 

1 

(6) 

where K(x) is the elliptical function of the first kind defined 
by 

K(x) -K [l+ (L)Qp* (1’3)2 
2 2.4 

x4+*.*] (7) 

After carrying out a straightforward calculation, I show that 
the acceleration field E, in Eq. (5) is approximated by 

(8) . 
*[K(r,) U(l-7,) + +C($) U(Z,-1) I, 

where U(x) is the Heaviside step function. Equation (8) can 
be used to calculate the acceleration-gradient field for a broad 
range of system parameters, where the drive current changes 
fast. Note that the drive-beam current I(t) in Eq. (8) is not 
specified yet. 

In order to investigate the long pulse-driven 
accelerator, we consider the drive current defined by 

I(t) - Im(l - I 
I In' t<o, 

--&I, o< t<At, (9) 

0, t>At, 

where the parameter At is the termination time of the drive 
beam current. In reality, the drive-beam current I(t) at t < 
0 increases very slowly to I, at t = 0. Thus, Eq. (9) is a 
good approximation. Substituting Eq. (9) into Eq. (8), and 
making use of the definitions in Eq. (4) and 

t - ct rl’ cAt 
=,fi ’ 2%‘i= ’ (10) 

the acceleration field can be expressed as 

E,(t) (11) 

where the function q(r) for the drive current in Eq. (9) is 
defined by 

q(r) -~~drlU(Tpr’) [K(s,) U(l-r,) 

+.LC( 
Tl 

-$I U(r,-1) 1, 

ands’=r-r 1' 

(12) 

Figure 1 presents plots of the function q(r) versus 
the normalized time T obtained from Eq. (12) for 11 = 0.05 
(solid line), 0.1 (broken line), 0.2 (dotted line), and 0.4 (thin 
broken line). Several points are noteworthy in Fig. 1. First, 
the shorter the normalized termination time the higher the 
peak value of the function q. Second, the peak value of the 
function q(r) is about 2.5 even for a relatively slow 
termination time. This peak value occurs at T - 1. Third, 
the function q(r) is always positive for the choice of the drive 
current in Eq. (9). Fourth, the value of the function q in the 
range of r satisfying 0 < T < q increases linearly with time 
T. As we note from Eq. (9), the drive current decreases 
linearly to zero in this range of r. Because the q value of 
this tail portion of the drive beam increases with time, the 
termination slope stiffens further. This mechanism may 
decrease the normalized termination time rl as time goes by. 
Finally, we emphasize that the time duration of the high 
acceleration field is quite broad. This property is important 
for a long witness beam. In the limit when the normalized 
termination time q is much less than unity, i.e., n < < 1, 
Eq. (12) is approximated by 
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O<r<q, 

K(s-y, T)<r<l, 

4(r) - (13) 
1.4+$ In($), 1<z<l+Tl, 

+l(-$), r>l+q, 

which agrees reasonably well with the numerical result in Fig. 
1 even for q = 0.4. 

qw 

3.51 I 

Fig. 1. Plots of the function q(T) versus the normalized time 
T obtained from Eq. (12) for ‘1 = 0.05 (solid line), 0.1 
(broken line), 0.2 (dotted line), and 0.4 (thin broken line). 

As an example, I assume that the current termination 
parameter is equal to VI = 0.05, for which the peak value of 
the function q is 3.2 and the accelerating field is given by 

Em - (14) 

Assuming that the drive current I, = 20 kA, the hole radius 
R, = 0.4 cm and p/e = 4, we find from Eq. (14) that the 
accelerating field is given by E, = 0.6 gigavolt/meter, which 
is very encouraging number. The current termination 
parameter q = 0.05 corresponds to the real termination time 
of At = 2.6 picosecond for pe = 4. As shown in Eq. (9), 
the risetime of the drive-beam current must be considerably 
longer than the termination time. The risetime of 26 
picosecond may be enough for present example. The 
accelerating field in Eq. (14) for a ferromagnetic waveguide 
is six times of that in a dielectric waveguide’ for similar 
system parameters. I remind the reader that the whole pulse 
length in the example is less than 1 cm, thereby practically 
indicating that the drive beam is an intense bunch of electrons. 
The total charge of the drive-beam current in the example is 

less than 300 nanocoulomb. Tailoring the beam pulse as 
mentioned above is very important to achieve a high 
accelerating gradient. Obviously, the wakefield accelerator in 
a ferromagnetic waveguide has a great potential for high 
gradient acceleration of electrons. 

In order to achieve the high acceleration field, we 
must overcome two technical problems. First, the magnetic 
field in the energy storage material is limited by the saturation 
field B,, which is expressed as 

2PIQl 
Bs-7. 

1 
(15) 

Once the magnetic field in the storage material is saturated by 
the drive current I,, any additional increase of the current 
does not help much. Eliminating the current I, in favor of 
the saturation field B,, we rewrite Eq. (14) as 

(16) 

for the saturation current satisfying Eq. (15). Equation (16) 
clearly indicates that acceleration field is linearly proportional 
to the saturation field of the material. The higher the 
saturation field the higher the acceleration field. Second, 
reversal time of the magnetization in the storage material must 
be on the order of nanosecond or less. A sub-nanosecond 
reversal time has been accomplished several decades ago for 
a small ayt of high-permeability materials with p of 100 
or more. However, the wakefield accelerator for a high- 
current beam requires a bulk storage material. Establishing 
a short reversal time of the magnetization in a bulk material 
may require further research on the material science. 
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