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Abstract 

A fully self-consistent theory of ferromagnetic 
waveguide accelerators driven by a relativistic electron beam 
is developed. The theoretical analysis is based on Faraday’s 
law, which provides a second-order partial-differential 
equation of the azimuthal magnetic field, under the assumption 
that pe > > 1. Here p and e are the Permeability and 
dielectric constant of the waveguide material. The azimuthal 
magnetic field and axial acceleration field are obtained in 
forms of integral equations for an arbitrary profile of the 
drive-beam current I(t). 

I. INTRODUCTION 

An induced electric field appears whenever the 
magnetic field changes in time. This induced electric field is 
an excellent means for charged particle acceleration. One of 
the most advanced devices for intense electron beam 
accelerators is the induction linear accelerator (Linac), ’ where 
each module of many local accelerators applies its electric 
field to a cluster of traveling electrons. The electric field of 
each local accelerator in Linac originates from the time 
varying magnetic field, which is excited by an electrical 
current carried by a wire. In recent years, there has been a 
strong progress in the high-current electron-beam technology. 
Electron beams with an energy of 10 MeV and a current of 10 
kA are easily available in the present technology. In addition, 
a tremendous improvement has been made in the effective 
control of these electron beams, including the focus, 
modulation, and a timely termination of the beam current. 
Thus, the electron beam itself is used as a drive current in the 
wakefield accelerators, where a short and intense bunch of 
electrons waveguide,~-~ses through a plasma2-4 or dielectric 

leaving behind intense electromagnetic field. 
The axial component of this electromagnetic field accelerates 
charged particles in the witness beam, which follows the drive 
electron beam. Based on the transverse magnetic (TM) 
waveguide modes, a preliminary theory6p7 has been developed 
to estimate the acceleratian field, which is the fundamental- 
radial mode in most cases. However, in reality, the 
acceleration field is a sum of the whole radial modes, which 
is a complicated function of various physical parameters, 

This work was supported by the Independent Research Fund at the 
Naval Surface Warfare Center. 

including the geometric configuration, the material properties 
of the waveguide, and so on. In addition, evolution of the 
acceleration field in time is again a sum of the every radial- 
mode evolution. In this regard, we develop a fully self- 
consistent theory of the wakefield accelerators, which consists 
of a waveguide with a ferromagnetic material. 
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Fig. 1. Ferromagnetic waveguide accelerators. 

II. BASIC ASSUMPTIONS 

The theoretical model is based on the induced electric 
tield due to decay of the field energy stored in an energy 
storage device. As shown in Fig. 1, we assume that an 
electron beam with current I(t) propagates through a hole with 
radius of R, in the field-energy storage with radius of R2. 
Note that the electron-beam current I(t) carries both charge 
and current, which store the electric- and magnetic-field 
energies in the energy storage device. The line charge density 
J.(t) carried by the current I(t) is given by a(t) = I(t)/@, 
where PC is the beam velocity and c is the speed of light in 
vacuum. In the subsequent analysis, a polar coordinate 
system is introduced with the z-axis along the axis of 
symmetry, r represents the radial distance from the axis and 
8 is the polar angle. The system is azimuthally symmetric 
around the axis. Due to a slowly changing current I(t), the 
azimuthal magnetic field B8 in the energy storage material is 
given by 

B,(r,t) - J@@4 
cr 

(1) 
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where k is the permeability of the energy storage material. 
Similarly, the radial electric field E, in the range of r 
satisfying R, < r < R2 is given by 

B&r,4 - [&QkJ, (W exP(-A kf)l (6) 

E,(r,A - *- (2) where J,(x) is the Bessel function of the first kind of order 

where e is the dielectric 
material. The field energy 
electric fields in Eqs. (1) 
storage material. 

I 

epcr’ 
I 

one and kk is the generalized frequency. Substituting Eq. (6) 
into Eq. (5) and defining 

constant of the energy storage 
associated with the magnetic and 
and (2) is stored in the energy yk e 

We note from Eqs. (1) and (2) that the induced we find that the generalized frequency $, is expressed as 
electric field due to the radial electric field Er is negligible in 
comparison with that due to the azimuthal magnetic field B6 kk - yk - iop (8) 

for the energy storage material with ep > > 1, which is 
common in present applications. In this context, in the Defining the critical wave number b by 
subsequent analysis, we use the relation - 

$ E,(v) - $&B&J) (3) 
2xa p 

Ro-c ;’ 
J 

(9) 

in evaluation of the induced electric field resulted from a fast- we can express the time profile of the solution in Eq. (6) by 
changing drive current. 

exp(akt)l 0 < k < &I 

III. ACCELERATING FIELD FOR DRIVE-BEAM I(t) 4kM - exp(-l,r) - ev(-y kd+ 
i cos((‘),$ k ’ &,, 

As shown in Eq. (3), the induced electric field (W 
increases drastically as the drive current decreases quickly. 
Remember that a high induced electric field is needed for which satisfies the initial and final conditions, qk(t=O) = 1 
efficient acceleration of charged particles. When the drive and qk(t=OD) = 0. Substituting Eq. (10) into Eq. (6), the 
current changes quickly, the induced electric field must be desired solution is expressed as 
determined in a self-consistent manner. Ampere’s law in the 
Maxwell equation is written as Ba hr) - cdkukJl &) qk(‘b (11) 

me a VXB---E+- 479 
P (4) 

Cb c 

We now calculate the magnetic field BO(r,t) driven 
where B is the magnetic field, E is the electric field, and the by the current I(t) = I(t’)U(t-t’), where U(x) is the Heaviside 
total current density JT represents both the steady-state beam step function defined by U(x) = 1 for x > 0 and 0, 
current and the induced current Jia. Assuming that the otherwise. It is obvious that B, = 0 for t C t’ by the 
conductivity of the energy storage material is u, the induced causality. The magnetic field at the time t > t’ is expressed 
current density is expressed as J;, = aE. Making use of as 
Faraday’s law, the curl of Eq. (4) is expressed as 

$[+$(rB,,)] - y$Be - ExBo - 0, (3 
J-U) - + ~(%-r)(r-&)l + LoaudI @I qk(r-t’)w 

c2 at2 W) 

in the storage device defined by the range of r satisfying R1 where the first term in the right-hand side represents the 
< r < R2. In obtaining Eq. (5), we have neglected the term 
($/aZ2)B, = (lip2c2)($/;X2)B,+ which is much less than 

steady-state solution and the second term represents the time- 
transient solution. Note that the time-transient solution in Eq. 

the term proportional to pe in Eq. (5) provided pe > > 1. (12) vanishes at the time t - 0~. In obtaining Eq. (12), we 
have neglected the steady-state solution outside of the energy 

The solution of Eq. (8) is expressed as storage material, assuming that the magnetic permeability of 
the material is much higher than unity (u > > 1). 
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Making use of the initial condition qh(t-t’) = 1 at t the time derivative of the azimuthal magnetic field as shown 
= t’, we obtain in Eq. (3). Substituting Eq. (18) into Eq. (3) gives 

~q(R&(r-R,)] + &IhkJ,(kr) - 0, (W %E,(rsr) (1% 
from Eq. (12). Multiplying Eq. (13) by rJl(k’r) and making 
use of the orthogonality of the Bessel function 

I o-xdLz,(qx).z,(Ex) - y, (14) 

we obtain 

ak - 2p ‘94@%?) - J&m,)l~ 

where Jo(x) is the Bessel function of the first kind of order 
zero. Substituting Eq. (15) into Eq. (12), the magnetic field 
at the time t > t’ is therefore expressed as 

B&J) - +z(f) + 
cr 

~~~IJo(kR3 (l6) 

- J&m,)IJ,(Rr)q,(z-z?~ 

for Rl < r < R2. 

It is necessary to evaluate the magnetic field due to 
the drive beam pulse defined by I(t) = I(t’)U[(t’ + At’-t)(t-t’)] 
with the pulse length At’. Paralleling the derivation of Eq. 
(16), the magnetic field at the time t > t’ + At’ is given by 

AB,(v) - - afq)-dkIJo(~ 

- 4,WW,~W(~q~A~‘. 
(17) 

which is the magnetic field contributed by a segment At’ of 
the drive beam current I(t’). In obtaining Eq. (17), we have 
assumed that the pulse length At’ is very small. Integrating 
Eq. (17) over the time t’, we can show that the magnetic field 
BO(r,t) due to a continuous drive beam is expressed as 

4,(v) - -+Jpjaw%J - 4wlw,&4 
(18) 

which determines the magnetic field in the storage material for 
an arbitrary time profile of the drive beam current I(t’). 

The induced axial-electric field E, is proportional to 

’ J -ldi(z) -f/,+% 

where use has been made of the relation (a/&)qk = - 
(a/&‘)q,. Neglecting the azimuthal magnetic field outside 
the energy storage material (r > R2), we approximate the 
boundary condition of the axial electric field by E,(r,t) = 0 
at r = R2. Integrating Eq. (19) over the radius r, the axial 
electric field in the energy storage material (R1 < r < R2) is 
given by 

m 
- Jo(b)l[m:m’($) 5 qk(‘+% 

Because we neglect the axial electric field due to the 
azimuthal magnetic field in the hole (r < RI), the axial 
electric field E,, which accelerates the charged particles at the 
axis, is approximately given by the electric field at r = R,. 
Equation (20), together with Eq. (18), is one of the main 
results of this article and can be used to determine the 
acceleration gradient for a broad range of physical parameters, 
including properties of the energy storage material, geometric 
configuration of the system, species of the charged particles, 
and intensity of the drive-beam current. Specific examples of 
application of Eq. (20) will be presented in the following 
papers. 
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